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A B S T R A C T

Network function virtualization (NFV) and multi-access edge computing (MEC) have become two crucial
pillars in developing 5G and beyond networks. NFV promises cost-saving and fast revenue generation through
dynamic instantiation and the scaling of virtual network functions (VNFs) according to time-varying service
demands. Additionally, MEC provides considerable reductions in network response time and backhaul traffic
since network functions and server applications can be deployed close to users. Nevertheless, the placement
and chaining of VNFs at the network edge is challenging due to numerous aspects and attendant trade-offs. This
paper addresses the problem of dynamic user plane function placement and chaining reconfiguration (UPCR)
in a MEC environment to cope with user mobility while guaranteeing cost reductions and acceptable quality of
service (QoS). The problem is formalized as a multi-objective integer linear programming model to minimize
multiple cost components involved in the UPCR procedure. We propose a heuristic algorithm called dynamic
priority and cautious UPCR (DPC-UPCR) to reduce the solution time complexity. Additionally, we devise a
scheduler mechanism based on optimal stopping theory to determine the best reconfiguration time according
to instantaneous values of latency violations and a pre-established QoS threshold. Our detailed simulation
results evidence the efficiency of the proposed approaches. Specifically, the DPC-UPCR provides near-optimal
solutions, within 15% of the optimum in the worst case, in significantly shorter times than the mathematical
model. Moreover, the proposed scheduling method outperforms two scheduler baseline solutions regarding the
number of reconfiguration events and QoS levels.
1. Introduction

The fifth generation (5G) of mobile networks will likely mark a
turning point not only in the telecommunications field but in almost
all spheres of society (e.g., health care, education, and industry). 5G
technology is expected to bring tremendous growth in connectivity,
mobile traffic capacity, and new capabilities that enhance performance
by providing greater throughput, lower latency, ultra-high reliability,
higher connectivity density, and an expanded range of mobility [1].
These features demand unprecedented transformations regarding how
services are created and operated, how users communicate, and how
networks are designed and managed.

In the path toward 5G and beyond networks, technologies such
as network function virtualization (NFV) [2] and multi-access edge
computing (MEC) [3] are two fundamental enablers [1,4]. NFV allows
coping with user demand variations through flexible and dynamic de-
ployment and scaling of virtual network functions (VNFs). Additionally,
MEC brings computing, storage, and networking capabilities close to
users, at the network edge.
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The implementation of user plane functions (UPFs) [5] and applica-
tions at the network edge will reduce the end-to-end (E2E) network
response time and backhaul bandwidth consumption, thus avoiding
traffic congestion in the core network. Furthermore, the virtualiza-
tion of UPFs provides more efficient usage of MEC node resources
since UPFs can be scaled and deployed on demand. Nonetheless, the
VNF placement, especially 5G UPFs, at the network edge poses extra
challenges due to numerous aspects and attendant trade-offs. In 5G net-
works, packet data unit (PDU) sessions can be served by multiple UPFs,
chained together, and realizing diverse tasks to enhance efficiency.
Numerous UPFs performing different functionalities in a service data
path add extra complexity to the problem since we must consider their
order and inter-dependency requirements under strict service latency
demands and limited resources at edge locations.

Moreover, fulfilling the 5G data plane’s stringent latency require-
ments (less than 1 ms) demands additional levels of user plane distri-
bution, moving from up to 100 sites to a maximum of 1000 sites [6].
The latter will require higher deployment and operational costs as more
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edge nodes and UPF instances need to be deployed. Additionally, in a
MEC ecosystem, frequent session relocations are most likely due to the
presence of highly mobile users and UPFs’ smaller service areas.

On the other hand, expenditures and session relocations can be
reduced by decreasing the number of UPF instances and consolidating
their deployment on a small subset of edge nodes. However, this may
cause the quality of service (QoS) to deteriorate and routing costs to
increase. Moreover, dynamic UPF placement and chaining reconfigu-
ration (UPCR) may be required to cope with user mobility and ensure
QoS. Nevertheless, these reconfiguration events may produce temporal
service interruptions, extra delays along and additional costs. Thus,
this study addresses problems related to determining the best UPCR
that allows cost reductions while ensuring 5G service requirements
are fulfilled. Moreover, the optimal time to readjust the UPCR needs
to be determined to reduce reconfiguration effects. Overall, our work
addresses the question of how and when the UPCR should be performed.
In this regard, our main contributions can be summarized as follows:

• We formulate the UPCR problem as an integer linear program-
ming (ILP) model under service function chain (SFC) and UPF
specific constraints. The model’s primary goal is to minimize
capital and operational costs related to reconfiguration events
while ensuring service requirements.

• We design a heuristic algorithm based on the SFCR-mapping
procedure [7], referred to as the Dynamic Priority and Cautions
UPCR (DPC-UPCR), to efficiently remap SFC requests (SFCRs) and
readjust UPF placement in online scenarios. Extensive simulation
results evidence that the DPC-UPCR algorithm outperforms two
greedy-based baselines and provides near-optimal reconfiguration
costs in a significantly shorter time than the baselines.

• We provide a decision-making mechanism based on optimal stop-
ping theory (OST), referred to as the Optimal Scheduler Reconfig-
uration (OSR), to determine the optimal time to adjust the UPF
placement and chaining (UPC) configuration. The OSR mecha-
nism decides the reconfiguration time according to instantaneous
values of sessions with latency violations, an upper QoS threshold,
and expected reconfiguration costs. The conducted experiments
reveal that the conceived mechanism improves the QoS while
decreasing reconfiguration events by at least 30% compared with
other state-of-the-art approaches.

The remainder of this paper is organized as follows. Section 2 re-
views related work to the UPF placement and dynamic reconfiguration
of SFCs. Section 3 introduces the system model, used notation, and
proposed solutions for the UPCR problem. Following this, Section 4
introduces and describes the scheduling mechanism, while Section 5
discusses the simulation results. Finally, Section 6 concludes our work
and outlines directions for future research.

2. Related work

This section briefly reviews the literature related to the UPF place-
ment problem and the dynamic reconfiguration of SFCs. Special at-
tention is paid to their solution approaches (i.e., static or dynamic
placement and reactive or proactive reconfiguration strategies).

2.1. User plane function placement

Peters et al. [8] introduce the concept of anticipatory user plane
management for 5G networks to reduce the user plane configuration
latency during handovers. In this vein, decisions regarding intermediate
UPF (I-UPF) placement are made based on individual user mobility
patterns prediction (e.g., target access point). Additionally, in [9],
they provide a blueprint of their proposed approach for the I-UPF
placement. Their solution selects the best location by evaluating a cost
function that ranks feasible candidates according to the 5G use case
2

requirements.
Authors in [10,11] address the joint placement of edge servers
and anchor UPFs (A-UPFs) intending to improve QoS. In [10], two
solution approaches are presented (an ILP model and an algorithm)
with the main goal of minimizing UPF deployment costs according to
user mobility patterns. By contrast, in [11], the main aim is to minimize
latency subject to cost limitations. In both works, service demands are
assigned per traffic generators (access nodes) and not per session or
user basics.

Subramaya et al. [12] apply machine learning (ML) techniques for
the proactive auto-scale of user plane SFC placement. To this aim, they
propose two ML models to predict the required number of VNF based
on traffic traces. Moreover, they also address the joint user association
and SFC placement problem in a hierarchical MEC environment. The
problem is formulated as an ILP model targeted at minimizing E2E ser-
vice delay. To overcome scalability limitations, a heuristic is proposed
in which SFCs are mapped according to latency requirements. Never-
theless, no placement constraints associated with UPF requirements or
VNF-order are considered. In [7], the 5G UPC problem is formalized
as an ILP model aimed at optimizing provisioning cost and service
response time. The mathematical model encompasses several aspects:
UPF-specific requirements, VNF order, and chain topology. Moreover,
two heuristic-based approaches are presented to improve its solution
efficiency.

A common limitation of the aforementioned works is that they
overlook aspects associated with reconfiguration events such as session
relocation or UPF migration since static approaches are adopted. In this
regard, an ILP model for the placement reconfiguration of A-UPFs is
presented in [13] which does consider multiple cost components as well
as requirements during the UPF placement readjustment.

2.2. Dynamic SFC placement

The dynamic reconfiguration of VNF placement and chaining
(VNFPC) has been widely addressed in the literature through either
reactive [14–19] or proactive approaches [20,21].

Liu et al. [14] study the problem of joint optimization of new and in-
service SFCs provisioning. Their main objective is to maximize operator
revenue by maximizing the acceptance requests’ profit and reducing
deployment costs. The problem is formulated as ILP and a column
generator-based solution is presented to reduce time complexity. How-
ever, service latency requirements are not considered and the proposed
solution still presents scalability limitations.

In [15], the authors introduce a multi-objective ILP model to min-
imize SFC reconfiguration costs of value-added services in Content
Delivery Networks. Several cost components are considered (i.e., rout-
ing, migration, and VNF hosting and instantiation) along with resource
capacity, service latency, and mapping constraints. Similar objectives
are considered in [16], where a framework for adaptive VNFPC called
NFV-PEAR is presented. This framework has an optimization modulo
that runs periodically to readjust the VNFPC due to demand fluctu-
ations. Apart from network infrastructure resource optimization, the
proposed ILP model also seeks to reduce changes in VNFs and flow
mapping as well as SFC reassignments.

Liu et al. [17] address the SFC dynamic reconfiguration problem
to balance between the service provider’s revenue and reconfiguration
cost. They formulate the problem as an ILP model and propose a
heuristic solution that combines Tabu search and Fuzzy C-means. The
reconfiguration trigger condition is based on the substrate network
utilization thresholds (i.e., lower and upper bounds). In [18], the
VNF infrastructure migration and SFC reconfiguration problem are
formalized as an ILP model and a heuristic is proposed to solve it in
polynomial time. Its main objective is to minimize delay along with
network imbalance. The migration trigger conditions are physical node
failure and network resource overload.

Chen and Liao [19] investigate the impact of user mobility on em-

bedding SFCs in a MEC environment. They formulate the problem as an
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ILP to optimize user satisfaction by minimizing the effects of handovers
in the SFC migration delay and the service downtime. They consider
resource limitations in MEC servers and link bandwidth along with
service propagation delay requirement and migration time. They show
the problem to be NP-hard and propose a heuristic solution. However,
they adopt a user-based reactive approach since the migration decision
is taken upon user handover.

Gu et al. [20] propose an online learning solution to predict SFC
flows to take VNF scaling decisions. Their main objective is to minimize
service provider operational expenditure by scaling and provisioning
VNF in a proactive way. They formulate the problem as a multi-
objective MILP model and present an algorithm for its online solution.
Wang et al. [21] propose a user-managed framework for the online
orchestration of SFCs at the edge in which each user is responsible for
managing and allocating resources to their service based on learned
information. Their objective is to minimize the E2E delay by leveraging
contextual information (i.e., user demand and mobility). The problem
is formulated as MIP subject to affinity, link capacity, and path-related
constraints, and a bandit-based algorithm is provided. However, the
effects of users’ decisions on the network operating costs are not
considered.

2.3. Optimal stopping time

The principles of OST have been widely adopted to solve optimiza-
tion problems. Cziva et al. in [22] propose an ILP model to minimize
users’ E2E service latency, s.t. latency and capacity constraints. Addi-
tionally, a dynamic placement scheduler is presented to forecast when
the placement needs to be readjusted. Their main objective is to guar-
antee the established QoS levels (i.e., the cumulative sum of sessions
with latency violations), whereas frequent placement recalculations are
avoided. They apply the principles of OST to dynamically determine
the optimal reconfiguration time. Likewise, authors in [13] propose a
scheduling method based on OST to decide the UPF placement recon-
figuration time according to instantaneous values of latency violations
and pre-established QoS thresholds.

In [23], a dynamic service migration strategy is presented to opti-
mize the energy consumption of the MEC platform. Anagnostopoulos
and Kolomvatsos [24] propose a model based on OST to determine the
right time to take a mitigation action in ENs (e.g., upgrade the current
services/resources or offload tasks). The optimal time to take these
actions is identified upon sequentially observed values of a specified
QoS metric. Yan et al. [25] study the joint optimization of model
placement and online model splitting with the goal of minimizing
the energy-and-time cost of device-edge co-inference. They formulate
the optimal model splitting point selection problem as an OSP and
propose a one-stage look-ahead (1-SLA) stopping rule to reduce solution
complexity.

Unlike the existing literature, our work investigates the problem
of dynamic UPF placement and chaining reconfiguration. To this aim,
PDU sessions are modeled as SFCRs, which may have different topolo-
gies (single and multiple branches) and numbers and types of con-
stituent UPFs. In this regard, the proposed solutions consider several
aspects such as UPFs’ roles and specificities (e.g., anti-affinity, inter-
dependency, and order) and multiple cost components associated with
the reconfiguration process. In addition, a scheduling mechanism based
on OST is introduced to determine the best reconfiguration time ac-
cording to instantaneous values of sessions with latency violation, QoS
threshold, and expected reconfiguration cost.

3. Optimal UPCR

This section presents a brief background on 5G UPFs, followed by
the system model and used notation. We then formulate the UPCR
problem as a multi-objective ILP model to optimize deployment and
operational expenditures associated with reconfiguration events. Lastly,
we describe the proposed heuristic referred to as DPC-UPC and analyze
its complexity.
3

Fig. 1. Example of UPF placement and SFC topologies in a MEC ecosystem.

3.1. 5G user plane functions

The 5G user plane is formed by the UPFs [5], which combine
functionalities of traditional serving and packet gateways (SGW and
PGW). The UPF’s primary function is to process data plane packets
between the access and data networks (AN and DN). Nevertheless,
it may perform other functionalities such as packet routing and for-
warding, traffic steering, QoS handling, packet inspection, and lawful
intersection. These functionalities do not need to be supported by a
unique UPF instance, and several UPFs with different roles can be
instantiated as needed. This approach provides faster response time
along with higher flexibility and scalability of the user plane. In 5G
standards, unlike traditional networks, a PDU session may be served
by multiple UPFs chained together.

Though UPFs can play many roles, the most common are the PDU
session anchor (PSA or A-UPF), intermediate-UPF, uplink classifier (UL-
CL), and branching point (BP) are the most common. The A-UPFs are
responsible for IP anchoring as well as terminating PDU sessions at
the DN end through the N6 interface. I-UPFs forward traffic between
the AN and the A-UPF through the interfaces N3 and N9, respectively.
They are used for redundant transmission based on two N3 and N9
tunnels (required for URLLC services) or to ensure service continuity.
Additionally, UL-CL and BPs are inserted between the AN and PSAs
when more than one PSA (i.e., multihoming) is required. These func-
tionalities allow selective traffic routing, which is highly useful for MEC
environments where the traffic may be routed or steered to applications
in the local DN [26]. Moreover, these UPFs are used to guarantee
session and service continuity during user handovers as well as load
balancing.

As UPFs are unaware of PDU session necessities, they need to be
told what to do. The entity responsible for this is the session manage-
ment function (SMF), located in the control plane. Basically, SMFs are
responsible for selecting, instructing, and managing the UPFs associated
with PDU sessions during their lifetimes. Moreover, PDU sessions can
have different characteristics and demands according to their topology
and service demands. This paper considers three basic topologies for
UPF SFCs. However, these topologies can be extended by including
other VNF types and UPF roles to create more complex structures. Fig. 1
illustrates these topologies as well as the deployment of UPFs in a MEC
ecosystem.
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Table 1
Physical and virtual networks notation.

Notation Description

Sets

𝑁 Set of all nodes
𝑁𝑟 Set of access nodes
𝑁𝑐 Set of candidate locations (e.g., MEC servers)
𝑁𝑎 Set of aggregation points
𝐸 Set of physical links
𝑃 Set of paths between all network nodes
𝑃𝑛,𝑚 Set of paths between nodes n and m
𝑇 Set of all types of available VNFs
𝐹 Set of already deployed VNF instances

Parameter

𝐶𝑐 Resource capacity at candidate node 𝑛 ∈ 𝑁𝑐
𝐶𝑡 Resource capacity of VNF of type 𝑡 ∈ 𝑇
𝛽𝑢,𝑣 Bandwidth capacity of link (u,v)
𝑑𝑢,𝑣 Latency associated with link (u,v)
𝑑𝑝 Latency associated with path 𝑝 ∈ 𝑃
𝑑𝑡 Processing delay of VNF of type 𝑡 ∈ 𝑇
𝐼𝑡 Maximum number of instances of type 𝑡 ∈ 𝑇
𝛹 Cost component

3.2. System model and notation

The 5G network model is described as a directed graph G(N, E),
where N and E denote the sets of physical nodes and edges, respec-
tively. The set of nodes is formed by three subsets: access nodes
(𝑁𝑟), aggregation points (𝑁𝑎) and server nodes (𝑁𝑐). Server nodes are
analyzed as VNF candidate locations since they provide virtualization
resources required to host VNF instances. The amount of resources
(e.g., memory and CPU) available in a candidate node is represented
by 𝐶𝑐 . A physical link (𝑢, 𝑣) ∈ 𝐸 is characterized by its bandwidth
capacity (𝛽𝑢,𝑣) and latency (𝑑𝑢,𝑣). The latter includes the propagation
delay and the processing time of transmission nodes. Moreover, a set of
pre-calculated paths (𝑃 ) is also included. Each path 𝑝 ∈ 𝑃 is identified
by its two endpoints (𝑛, 𝑚) and an id (ℎ) which helps to differentiate
ifferent paths between the same pair of nodes. The indicator 𝐻𝑝

𝑢,𝑣
pecifies if path 𝑝 is formed by link (𝑢, 𝑣) or not.

The set of available VNF types is denoted by 𝑇 , where 𝑡 ∈ 𝑇
epresents a specific type (e.g., t = 1: A-UPF, t = 2: MI-UPF, and t =
: I-UPF). For each VNF type, a processing capacity (𝐶𝑡), a processing
ime (𝑑𝑡), and a maximum number of instances (𝐼𝑡) are stipulated.
dditionally, the set 𝐹 represents those VNF instances that are running
t the reconfiguration time, where (𝑖, 𝑡) identifies the i-th instance of
ype t in F. These VNFs were deployed as a result of an initial placement
nd mapping configuration or due to a previous reconfiguration event.
able 1 provides the notation related to physical and virtual networks.

Let us consider the following scenario: a set of mobile devices are
onnected to the access network through their nearest access node
𝑛𝑠𝑟 ∈ 𝑁𝑠

𝑟 ) and requesting PDU sessions (𝑆). Each PDU session 𝑠 ∈ 𝑆
s compound by an ordered set of VNF services (𝐹𝑠) and requires a
ertain processing capacity (𝐶𝑠), bandwidth (𝐵𝑠), and E2E delay (𝐿𝑠)
o be served. The properties of a given SFCR 𝑠 ∈ 𝑆 are represented
y a tuple (𝑛𝑠𝑟 , 𝐹𝑠, 𝐶𝑠, 𝛽𝑠, 𝐿𝑠, 𝐵𝑠, 𝑇

𝑓,𝑡
𝑠 , 𝑂𝑓,𝑔,𝑏

𝑠 , 𝑄𝑓,𝑏
𝑠 ), where parameters 𝐵𝑠,

𝑓,𝑡
𝑠 , 𝑂𝑓,𝑔,𝑏

𝑠 and 𝑄𝑓,𝑏
𝑠 denote the number of branches in an SFCR, the

ype of each VNF, as well as their order and presence in each branch,
espectively. Unlike other related studies, our model does not include
he destination nodes of an SFCR since we assume that they are DNs
o-located with A-UPFs. The used notation for SFCRs and decision
ariables is summarized in Table 2 and Table 3, respectively.

.3. Optimal UPCR

In this subsection, we formulate the UPCR problem as an ILP model
imed at minimizing deployment and operational costs associated with
he UPF placement and chaining configuration during reconfiguration
4

vents. To perform this, we consider multiple cost components:
Table 2
Service Function Chain Request notation.

Notation Description

𝑆 Set of PDU sessions (SFCRs)
𝑁𝑠

𝑟 Set of access nodes (𝑁𝑟) per PDU sessions
𝑛𝑠𝑟 Access node (𝑛𝑟 ∈ 𝑁𝑟) of SFCR 𝑠 ∈ 𝑆

𝐹𝑠 Set of VNFs forming SFCR 𝑠 ∈ 𝑆
|𝐹𝑠| Number of VNFs forming SFCR 𝑠 ∈ 𝑆
𝐶𝑠 Computing resources required by SFCR 𝑠 ∈ 𝑆
𝛽𝑠 Bandwidth capacity required by SFCR 𝑠 ∈ 𝑆
𝐿𝑠 E2E latency requirement of SFCR 𝑠 ∈ 𝑆
𝐵𝑠 Number of A-UPFs (branches) in SFCR 𝑠 ∈ 𝑆

𝑇 𝑓,𝑡
𝑠 1 if VNF 𝑓 ∈ 𝐹𝑠 forming SFCR 𝑠 ∈ 𝑆 is of type 𝑡 ∈ 𝑇

𝑂𝑓,𝑔,𝑏
𝑠 1 if VNF f goes just before VNF g in branch 𝑏 ∈ 𝐵𝑠 of SFCR 𝑠 ∈ 𝑆

𝑄𝑓,𝑏
𝑠 1 if VNF 𝑓 ∈ 𝐹𝑠 is present in branch 𝑏 ∈ 𝐵𝑠 of SFCR 𝑠 ∈ 𝑆

Table 3
Decision variables and indicators.

Notation Description

Binary variables

𝑤𝑛 1 if candidate node 𝑛 ∈ 𝑁𝑐 is open.
𝑟𝑠 1 if PDU session 𝑠 ∈ 𝑆 was reassigned during the reconfiguration.

𝑣𝑖,𝑡 1 if as a result of the reconfiguration there is a new instance
𝑖 ∈ 𝐼𝑡 of VNF type 𝑡 ∈ 𝑇

𝑥𝑖,𝑡,𝑛 1 if instance 𝑖 ∈ 𝐼𝑡 of VNF type 𝑡 ∈ 𝑇 is deployed on node 𝑛 ∈ 𝑁𝑐

𝑚𝑖,𝑡,𝑛′ ,𝑛 1 if instance 𝑖 ∈ 𝐼𝑡 of VNF type 𝑡 ∈ 𝑇 was migrated from node
𝑛′ to node n ( 𝑛′ , 𝑛 ∈ 𝑁𝑐 )

𝑧𝑓,𝑠𝑖,𝑡,𝑛 1 if VNF 𝑓 ∈ 𝐹𝑠 of SFCR 𝑠 ∈ 𝑆 is mapped to instance 𝑖 ∈ 𝐼𝑡 of
VNF type 𝑡 ∈ 𝑇 located at node 𝑛 ∈ 𝑁𝑐

𝑎𝑓,𝑠𝑛 1 if VNF 𝑓 ∈ 𝐹𝑠 of SFCR 𝑠 ∈ 𝑆 is assigned to node 𝑛 ∈ 𝑁𝑐

𝑦𝑓,𝑔,𝑠𝑝 1 if path 𝑝 ∈ 𝑃 is used to route traffic between VNFs f and g
(𝑓, 𝑔 ∈ 𝐹 +

𝑠 ) of SFCR 𝑠 ∈ 𝑆

𝛿𝑓,𝑔,𝑠𝑛,𝑚 1 if VNFs f and g (𝑓, 𝑔 ∈ 𝐹𝑠) of SFCR 𝑠 ∈ 𝑆 are mapped on nodes
n and m, resp.

𝜉𝑡 1 if there is at least one new VNF instance of type 𝑡 ∈ 𝑇 deployed
in the network

Binary indicators

�̄�𝑖,𝑡,𝑛 1 if instance 𝑖 ∈ 𝐼𝑡 of VNF type 𝑡 ∈ 𝑇 was placed on node 𝑛 ∈ 𝑁𝑐
before the reconfiguration

�̄�𝑓,𝑠
𝑛 1 if VNF 𝑓 ∈ 𝐹𝑠 of SFCR 𝑠 ∈ 𝑆 is hosted in node 𝑛 ∈ 𝑁𝑐

𝐻𝑝
𝑢,𝑣 1 if path 𝑝 ∈ 𝑃 is mapped to link (𝑢, 𝑣) ∈ 𝐸

𝑉 𝑡
𝑛 1 if node 𝑛 ∈ 𝑁 supports VNFs of type 𝑡 ∈ 𝑇

• Node activation cost (𝐶𝑎𝑐𝑡): It represents the cost associated with
the activation of servers (e.g., energy consumption). This cost is
produced when empty candidate nodes (candidates with no VNF
deployed) host at least one VNF instance after the reconfiguration.

𝐶𝑎𝑐𝑡 =
∑

𝑛∈𝑁𝑐

𝛹 𝑛
𝑎 ⋅𝑤𝑛 (1)

• VNF deployment cost (𝐶𝑑𝑒𝑝): It is the cost related to instantiating
new VNFs (e.g., software license cost).

𝐶𝑑𝑒𝑝 =
∑

𝑖∈𝐼𝑡

∑

𝑡∈𝑇
𝛹 𝑡
𝑑 ⋅ 𝑣𝑖,𝑡 (2)

• VNFs running cost (𝐶𝑟𝑢𝑛): It deals with the cost (e.g., power
consumption) of running VNF instances. Thus, it is expressed in
terms of the overall number of deployed VNFs.

𝐶𝑟𝑢𝑛 =
∑∑ ∑

𝛹 𝑡,𝑛
𝑟 ⋅ 𝑥𝑖,𝑡,𝑛 (3)
𝑖∈𝐼𝑡 𝑡∈𝑇 𝑛∈𝑁𝑐
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• VNF migration cost (𝐶𝑚𝑖𝑔): It is the cost for migrating an already
deployed VNF instance (𝑓 ∈ 𝐹 ) from one location to another.
Thus, it is expressed in terms of the number of deployed VNFs at
the reconfiguration moment.

𝐶𝑚𝑖𝑔 =
∑

(𝑖,𝑡)∈𝐹

∑

𝑛′∈𝑁𝑐

∑

𝑛∈𝑁𝑐

𝛹 𝑡,𝑛′ ,𝑛
𝑚 ⋅ 𝑚𝑖,𝑡

𝑛′ ,𝑛 (4)

• Routing cost (𝐶𝑟𝑜𝑢): It expresses the cost of delivering traffic
among VNF services forming the SFCRs. Note that this expression
can also improve network response time since it includes the
propagation delay of the virtual links that form the SFC data
paths.

𝐶𝑟𝑜𝑢 =
∑

𝑓,𝑔∈𝐹+
𝑠

∑

𝑠∈𝑆

∑

𝑝∈𝑃
𝛹 𝑠,𝑝 ⋅ 𝑑𝑝 ⋅ 𝑦

𝑓,𝑔,𝑠
𝑝 (5)

• Session reassignment cost (𝐶𝑟𝑒𝑎): It is the cost for reassigning
PDU sessions during the UPC recalculation. This cost is measured
as a penalty that the service provider must pay for interrupting
user sessions or exceeding their service delay requirement. We
consider a session has been reassigned if at least one of its
constituent VNF services has been re-located from its previously
assigned server.

𝐶𝑟𝑒𝑎 =
∑

𝑠∈𝑆
𝛹 𝑠 ⋅ 𝑟𝑠 (6)

Given a UPF placement and chaining setup, determined upon either
an initial placement or a previous reevaluation event, the goal of the
UPCR problem is to determine the optimal UPF placement and chaining
rearrangement that minimizes the total costs incurred during reconfigu-
ration events. We express the objective function as a linear combination
of the aforementioned cost components to achieve this aim. Addition-
ally, we introduce weight factors (𝛼𝑖) to reflect the relative importance
of each component in the objective function. Moreover, to avoid the
influence of one term over the others, we need to normalize their
magnitudes. Thus, the UPCR problem can be formulated as follows:

Min 𝐶𝑡𝑜𝑡 = 𝛼1 ⋅ 𝐶𝑎𝑐𝑡 + 𝛼2 ⋅ 𝐶𝑑𝑒𝑝 + 𝛼3 ⋅ 𝐶𝑟𝑢𝑛 + 𝛼4 ⋅ 𝐶𝑚𝑖𝑔 + 𝛼5 ⋅ 𝐶𝑟𝑜𝑢 + 𝛼6 ⋅ 𝐶𝑟𝑒𝑎

(7)

A set of constraints must be satisfied to generate valid solutions
to the problem. We group these constraints into the following seven
categories:

Infrastructure resources constraints: Constraints (8), (9), and
(10) refer to resource limitations in the MEC servers, deployed VNF
instances and physical links, respectively. More specifically, constraint
(8) ensures that the instances deployed in the candidate nodes do not
exceed their available resources (e.g., CPU and memory). Similarly,
inequalities (9) and (10) enforce the mapping of SFCRs to those VNF
instances and physical links with sufficient processing capacity and
bandwidth to satisfy their demands.
∑

𝑖∈𝐼𝑡

∑

𝑡∈𝑇
𝐶𝑡 ⋅ 𝑥𝑖,𝑡,𝑛 ≤ 𝐶𝑛 ∀𝑛 ∈ 𝑁𝑐 (8)

∑

𝑓∈𝐹𝑠

∑

𝑠∈𝑆
𝐶𝑠 ⋅ 𝑧

𝑓,𝑠
𝑖,𝑡,𝑛 ≤ 𝐶𝑡 ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 ,∀𝑛 ∈ 𝑁𝑐 (9)

∑

𝑓,𝑔∈𝐹+
𝑠

∑

𝑠∈𝑆

∑

𝑝∈𝑃
𝛽𝑠 ⋅ 𝑦

𝑓,𝑔,𝑠
𝑝 ⋅𝐻𝑝

𝑢,𝑣 ≤ 𝛽𝑢,𝑣 ∀(𝑢, 𝑣) ∈ 𝐸(10)

VNF placement constraints: Inequality (11) forces server nodes
that are not hosting VNF instances to be closed, whereas constraint (12)
ensures the deployment of VNF instances in the candidate nodes that
are open and support the requested VNF type. Expression (13) guar-
antees that each VNF is hosted by only one server. Additionally, con-
straint (14) restricts the maximum number of instances of a given type
that can be deployed.

𝑤𝑛 ≤
∑ ∑

𝑥𝑖,𝑡,𝑛 ∀𝑛 ∈ 𝑁𝑐 (11)
5

𝑖∈𝐼𝑡 ∀𝑡∈𝑇
𝑥𝑖,𝑡,𝑛 ≤ 𝑤𝑛 ⋅ 𝑉
𝑡
𝑛 ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 ,∀𝑛 ∈ 𝑁𝑐 (12)

∑

𝑛∈𝑁𝑐

𝑥𝑖,𝑡,𝑛 ≤ 1 ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 (13)

∑

𝑖∈𝐼𝑡

∑

𝑛∈𝑁𝑐

𝑥𝑖,𝑡,𝑛 ≤ 𝐼𝑡 ∀𝑡 ∈ 𝑇 (14)

VNF assignment constraints: Inequality (15) expresses that a VNF
service requested by an SFC can only be assigned to a VNF if this
instance has already been deployed and is of the same type. Con-
straint (16) avoids the deployment of empty VNFs by ensuring that
all VNF instances have been assigned at least one SFCR. Moreover,
expression (17) ensures that only one VNF instance is selected to serve
a VNF service (𝑓 ∈ 𝐹𝑠) request. Expressions (18) and (19) establish
the relationship between the variables 𝑎𝑓,𝑠𝑛 and 𝑧𝑓,𝑠𝑖,𝑡,𝑛. Specifically, these
expressions state that if a VNF service request is mapped to a node,
this is because it has been assigned to a VNF instance deployed on that
node.

𝑧𝑓,𝑠𝑖,𝑡,𝑛 ≤ 𝑥𝑖,𝑡,𝑛 ⋅ 𝑇
𝑓,𝑡
𝑠 ∀𝑓 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 ,∀𝑛 ∈ 𝑁𝑐 (15)

𝑥𝑖,𝑡,𝑛 ≤
∑

𝑠∈𝑆

∑

𝑓∈𝐹𝑠

𝑧𝑓,𝑠𝑖,𝑡,𝑛 ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 ,∀𝑛 ∈ 𝑁𝑐 (16)

∑

𝑖∈𝐼𝑡

∑

𝑡∈𝑇

∑

𝑛∈𝑁
𝑧𝑓,𝑠𝑖,𝑡,𝑛 = 1 ∀𝑓 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆 (17)

𝑎𝑓,𝑠𝑛 ≤
∑

𝑡∈𝑇

∑

𝑖∈𝐼𝑡

𝑧𝑓,𝑠𝑖,𝑡,𝑛 ∀𝑓 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁𝑐 (18)

𝑎𝑓,𝑠𝑛 ≥ 𝑧𝑓,𝑠𝑖,𝑡,𝑛 ∀𝑓 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 ,∀𝑛 ∈ 𝑁𝑐 (19)

Path mapping constraints: Constraint (20) ensures that there is a
path in the specified direction (i.e., 𝑓 → 𝑔) between two consecutive
VNFs in a branch of an SFCR. In addition, inequality (21) restricts the
maximum number of selected paths between any pair of VNFs to one to
avoid loops. It should be noted that for these two constraints, the set of
VNFs forming an SFC has been extended (𝐹+

𝑠 = 𝐹𝑠 ∪ 𝑛𝑠𝑟) to include the
(R)AN, so as the path between the (R)AN and the first VNF in the chain
is also mapped. Furthermore, expression (22) guarantees the mapping
of consecutive VNF pairs to the endpoints of the selected path. Finally,
inequality (23) is an adaptation of (22) to include paths with the (R)AN
in one of their endpoints.
∑

𝑝∈𝑃
𝑦𝑓,𝑔,𝑠𝑝 ≥ 𝑂𝑓,𝑔,𝑏

𝑠 ∀𝑓, 𝑔 ∈ 𝐹+
𝑠 ,∀𝑏 ∈ 𝐵𝑠,∀𝑠 ∈ 𝑆 (20)

∑

𝑝∈𝑃
𝑦𝑓,𝑔,𝑠𝑝 ≤ 1 ∀𝑓, 𝑔 ∈ 𝐹+

𝑠 ,∀𝑠 ∈ 𝑆 (21)

∑

𝑝∈𝑃𝑛,𝑚

𝑦𝑓,𝑔,𝑠𝑝 ≤ 𝑎𝑓,𝑠𝑛 ⋅ 𝑎𝑠,𝑔𝑚 ∀𝑓, 𝑔 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑛, 𝑚 ∈ 𝑁𝑐 (22)

∑

𝑝∈𝑃𝑛𝑠𝑟 ,𝑚

𝑦𝑛
𝑠
𝑟 ,𝑔,𝑠
𝑝 ≤ 𝑎𝑠,𝑔𝑚 ∀𝑔 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆, 𝑛𝑠𝑟 = 𝑁𝑠

𝑟 [𝑠],∀𝑚 ∈ 𝑁𝑐 (23)

Constraint (22) is non-linear since it implies the product of two
variables. However, it can be replaced by the following set of linear
expressions:

𝛿𝑓,𝑔,𝑠𝑛,𝑚 ≤ 𝑎𝑓,𝑠𝑛 ∀𝑓, 𝑔 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑛, 𝑚 ∈ 𝑁𝑐

𝛿𝑓,𝑔,𝑠𝑛,𝑚 ≤ 𝑎𝑠,𝑔𝑚 ∀𝑓, 𝑔 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑛, 𝑚 ∈ 𝑁𝑐

𝛿𝑓,𝑔,𝑠𝑛,𝑚 ≥ 𝑎𝑓,𝑠𝑛 + 𝑎𝑠,𝑔𝑚 − 1 ∀𝑓, 𝑔 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑛, 𝑚 ∈ 𝑁𝑐
∑

𝑝∈𝑃𝑛,𝑚

𝑦𝑓,𝑔,𝑠𝑝 ≤ 𝛿𝑓,𝑔,𝑠𝑛,𝑚 ∀𝑓, 𝑔 ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆,∀𝑛, 𝑚 ∈ 𝑁𝑐

UPF constraints: Constraints (24) and (25) are UPF specific.
Inequality (24) defines the anti-affinity property for VNFs (e.g., UPFs)
of the same type. More specifically, it enforces the deployment of
VNF instances of the same type, serving the same PDU session, on
different servers. Similarly, expression (25) guarantees that PSA and I-
UPFs without multi-homing functions that serve the same PDU session
are also mapped to different locations.
∑ ∑

𝑧𝑓,𝑠𝑖,𝑡,𝑛 ≤ 1 ∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇 ,∀𝑛 ∈ 𝑁𝑐 (24)

𝑓∈𝐹𝑠 𝑖∈𝐼𝑡
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∑

𝑓∈𝐹𝑠

∑

𝑖∈𝐼𝑡

𝑧𝑓,𝑠1,𝑖,𝑛 +
∑

𝑓∈𝐹𝑠

∑

𝑖∈𝐼𝑡

𝑧𝑓,𝑠3,𝑖,𝑛 ≤ 1 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁𝑐 (25)

Reconfiguration constraints: Expressions (26)–(29) are related
o reconfiguration and help determine the type of changes produced
uring this event. Constraint (26) indicates that a VNF instance has
een migrated when its location before and after the reconfiguration is
ifferent. Note that this constraint is linear, as 𝑋𝑖,𝑡,𝑛 is a parameter and

not a variable. We added expressions (27) and (28) to promote VNF
migration over new deployments when the deployment component is
not considered in (7). Otherwise, new instances can be deployed when
optimizing migration effects. Mainly, they express the instantiation of
new VNFs of a given type, as the activation of new VNFs’ IDs and the
incremental in the number of its deployed instances w.r.t. the previous
placement configuration.

𝑚𝑖,𝑡
𝑛′ ,𝑛 = 𝑥𝑖,𝑡,𝑛 ⋅ �̄�𝑖,𝑡,𝑛′ ∀(𝑖, 𝑡) ∈ 𝐹 ,∀𝑛, 𝑛′ ∈ 𝑁𝑐 ; 𝑛 ≠ 𝑛′ (26)

𝑣𝑖,𝑡 =
[
∑

𝑛∈𝑁𝑐

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

�̄�𝑖,𝑡,𝑛
]+ ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇 (27)

∑

𝑖∈𝐼𝑡

𝑣𝑖,𝑡 =
[
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

�̄�𝑖,𝑡,𝑛
]+ ∀𝑡 ∈ 𝑇 (28)

𝑟𝑠 = 1 ⇔ |𝐹𝑠| −
∑

𝑓∈𝐹𝑠

∑

𝑛∈𝑁𝑐

𝑎𝑓,𝑠𝑛 ⋅ �̄�𝑓,𝑠
𝑛 ≥ 1 ∀𝑠 ∈ 𝑆 (29)

Constraint (29) guarantees that if a session is reassigned, this is
because at least one of the VNFs forming the SFC has been re-located.
We assume that the reassignment of VNF service requests (e.g., 𝑓 ∈ 𝐹𝑠)
inside the same server does not affect the session/service continuity.
However, for more restrictive considerations it could be modified by ex-
pressing 𝑟𝑠 in terms of the variable 𝑧𝑓,𝑠𝑖,𝑡,𝑛 instead of 𝑎𝑓,𝑠𝑛 . Please note that
expressions (27)–(29) are not linear. Thus, they can be reformulated in
a linear form as follows:

(27) ⇔
⎧

⎪

⎨

⎪

⎩

𝑣𝑖,𝑡 ≥
∑

𝑛∈𝑁𝑐

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

�̄�𝑖,𝑡,𝑛 ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇

2 ⋅ 𝑣𝑖,𝑡 ≤ 1 +
∑

𝑛∈𝑁𝑐

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

�̄�𝑖,𝑡,𝑛 ∀𝑖 ∈ 𝐼𝑡,∀𝑡 ∈ 𝑇

(28) ⇔

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

𝑖∈𝐼𝑡

𝑣𝑖,𝑡 = 𝜉𝑡 ⋅ (
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

�̄�𝑖,𝑡,𝑛) ∀𝑡 ∈ 𝑇

𝜉𝑡 ≥ (
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

�̄�𝑖,𝑡,𝑛)∕𝐼𝑡 ∀𝑡 ∈ 𝑇

𝜉𝑡 ≤ (𝐼𝑡 +
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

𝑥𝑖,𝑡,𝑛 −
∑

𝑛∈𝑁𝑐

∑

𝑖∈𝐼𝑡

�̄�𝑖,𝑡,𝑛)∕(𝐼𝑡 + 1) ∀𝑡 ∈ 𝑇

29) ⇔
⎧

⎪

⎨

⎪

⎩

∑

𝑓∈𝐹𝑠

∑

𝑛∈𝑁𝑐

𝑎𝑓,𝑠𝑛 ⋅ �̄�𝑓,𝑠
𝑛 ≥ |𝐹𝑠|(1 − 𝑟𝑠) ∀𝑠 ∈ 𝑆

∑

𝑓∈𝐹𝑠

∑

𝑛∈𝑁𝑐

𝑎𝑓,𝑠𝑛 ⋅ �̄�𝑓,𝑠
𝑛 ≤ |𝐹𝑠 ⋅ | − 𝑟𝑠 ∀𝑠 ∈ 𝑆

QoS constraints: The QoS is measured in terms of service latency
hich is expressed as the combination of the VNF processing time
nd the propagation delays between consecutive VNFs in a branch.
n this regard, constraint (30) guarantees that the E2E delay, in the
ound-trip-time (RTT), does not violate the service latency requirement.

⋅ (
∑

𝑓∈𝐹+
𝑠

∑

𝑡∈𝑇

∑

𝑛∈𝑁𝑐

𝑑𝑡 ⋅𝑄
𝑓,𝑏
𝑠 ⋅ 𝑇 𝑓,𝑡

𝑠 +
∑

𝑓,𝑔∈𝐹+
𝑠

∑

𝑝∈𝑃
𝑑𝑝 ⋅ 𝑂

𝑓,𝑔,𝑏
𝑠 ⋅ 𝑦𝑓,𝑔,𝑠𝑝 ) + 𝑑𝐷𝑁 ≤ 𝐿𝑠

𝑏 ∈ 𝐵𝑠,∀𝑠 ∈ 𝑆 (30)

The VNF placement and chaining problem, as well as its dynamic re-
onfiguration, have been proven to be NP-hard problems [14,17,18,27,
8]. The complexity of these problems derives from the requirements
nd constraints (e.g., node capacity, latency, and anti-affinity) that
eed to be satisfied during their solution. Evaluating these restrictions
ecomes intractable for large networks where the number of possible
ombinations increases with the network size (number of nodes and
inks) and users (SFCRs). Given that UPFs are a specific VNF type
ith similar requirements to these two problems as well as additional
nes due to UPF’s different roles and SFC topologies (linear and non-
6

inear), we can deduce that the UPCR problem is also NP-hard, and t
o polynomial-time complexity algorithm exists to solve it unless 𝑃 =
𝑃 . To overcome this limitation, the design of heuristic solutions to

olve the UPC problem for large-scale scenarios in polynomial time is
andatory.

.4. Dynamic priority and cautious UPCR

Scalability limitations associated with ILP models cause the latter
o become computationally intractable as the solution space increases
e.g., the number of MEC servers, SFCRs and VNFs). For this reason,
e design a heuristic algorithm capable of solving the UPCR prob-

em in polynomial time. The pseudo-code of the proposed solution
i.e., DPC-UPCR) is shown in Algorithm 1.

The DPC-UPCR algorithm comprises four main stages. In the first
hase, the algorithm starts by gathering data related to the current
lacement configuration and SFC mapping (line: 2). For example, the
lgorithm collects information about the location of each VNF instance,
ts available capacity, and infrastructure resource utilization. This data
s later used to determine the SFCR mapping and placement locations
hat imply fewer transformations and have the lowest impact on the
verall reconfiguration cost. Following this, the algorithm creates the
et of sessions that are remapped during the placement reconfiguration
line: 4). This set can encompass either all the active sessions in the
ystem or a subset of them, as indicated by the parameter 𝑃𝑟. In the
atter case, the sessions with the worst QoS are prioritized (i.e., sessions
ith latency violations or sessions which have almost exceeded their

ervice latency requirement). Afterward, the algorithm proceeds to
elease resources assigned to the selected SFCRs (line: 5). As part of
his step, sessions assigned to underutilized VNF instances can also
e unmapped, which implies an update of the set of sessions to be
emapped (line: 6). As a result of this step, VNF instances can be
emoved, and active servers can be closed.

The second phase of the algorithm aims to determine the set of
vailable candidates for each SFCR. This phase starts by determining
he set of available candidates to be used during the SFC remapping
rocedure (line: 9). A server is considered available when it disposes
f enough resources to instantiate a new VNF or its deployed VNFs can
erve at least one SFCR. Once this step has been executed, the algorithm
roceeds to find the possible candidates for each SFC according to the
ervice latency requirements (lines: 10–12). This information helps to
etermine whether an SFCR is in a critical stage. An SFCR is considered
ritical if its number of possible candidates is lower or equal to the
inimum number required to map its constituent VNFs.

The third part of the algorithm involves the SFC mapping procedure.
irst, the selected SFCRs (𝑆𝑟𝑒𝑚𝑎𝑝) are sorted according to the established
riteria (line: 13). More specifically, they are sorted according to their
riticism, latency requirement, SFC length, access node location, and
he number of available candidates. This combination of parameters
ncreases the possibilities of successfully mapping the most demanding
nd critical sessions. After having established the initial mapping order
f the selected sessions, the algorithm starts looping over them by
lways choosing the most demanding one (line: 15). The algorithm uses
he SFCR-remapping procedure (line: 16) to map a session.

The SFCR-remapping method is based on the SFCR-mapping pro-
edure proposed in [7], with some minor modifications. The main
ifference between both procedures is the function used to evaluate the
apping cost of a VNF instance. More specifically, the SFCR-remapping
rocedure computes the mapping cost according to (7). Additionally,
his procedure does not consider the popularity of candidates.

For each unmapped VNF instance that forms the selected SFC, the
lgorithm determines all its available candidates. This step is required
iven that the latency budget and source nodes change with the map-
ing of previous VNFs in the chain. These candidates are then classified
s feasible or infeasible locations according to whether they satisfy or
ot the UPCR constraints (e.g., latency and anti-affinity). Additionally,

he algorithm obtains the shortest virtual path with enough bandwidth
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Algorithm 1: Dynamic Priority & Cautious UPCR
Input: flag_improve, No. of improvement attempts (𝐹𝑖), Percentage of

additional SFCs to remap (𝑃𝑟)
// Phase 1: Prepare variables and indicators

1 Initialize output variables and parameters
2 Gather information about previous placement and mapping

configuration
3 if 𝑃𝑟! = 100 then
4 𝑆𝑟𝑒𝑚𝑎𝑝 ← Select sessions (𝑠 ∈ 𝑆) to be remapped based on QoS

and 𝑃𝑟
5 Release resources assigned to selected sessions
6 Update 𝑆𝑟𝑒𝑚𝑎𝑝 if required

7 else
8 𝑆𝑟𝑒𝑚𝑎𝑝 ← S

// Phase 2: Find possible candidates and classify
SFCRs

9 Select candidates with available capacity
10 forall 𝑠 ∈ 𝑆𝑟𝑒𝑚𝑎𝑝 do
11 Determine possible candidates
12 Classify SFCR s as critical or not according to its number of

available candidates

// Phase 3: Map SFCRs
13 Sort 𝑠 ∈ 𝑆𝑟𝑒𝑚𝑎𝑝 according to established criteria (𝑠𝑜𝑟𝑡𝑐)
14 while 𝑆𝑟𝑒𝑚𝑎𝑝 ≠ ∅ do
15 𝑠 ← 𝑆𝑟𝑒𝑚𝑎𝑝[0]
16 SFCR-remapping procedure(s)
17 𝑆𝑟𝑒𝑚𝑎𝑝 ← 𝑆𝑟𝑒𝑚𝑎𝑝 − 𝑠
18 if mapping_success then
19 𝑆𝑚𝑎𝑝 ← 𝑆𝑚𝑎𝑝 ∪ 𝑠
20 Update network and infrastructure resources
21 if available servers changed then
22 Update available candidates and determine criticism level

for each SFCR
23 Sort selected SFCRs according to 𝑠𝑜𝑟𝑡𝑐

24 else
25 𝑆𝑢𝑛𝑚𝑎𝑝 ← 𝑆𝑢𝑛𝑚𝑎𝑝 ∪ 𝑠

// Phase 4: Improve solution and apply configuration
26 if 𝑆𝑢𝑛𝑚𝑎𝑝 = ∅ then
27 Determine cause of VNF with temporal IDs if any
28 if flag_improve then
29 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡 ← Compute solution’s cost
30 while 𝐹𝑖 ≠ 0 do
31 Make a copy of current best solution
32 𝑓𝑟𝑒𝑚𝑎𝑝 ← Randomly select a VNF different from the

previous one
33 𝑆𝑟𝑒𝑚𝑎𝑝 ← Sessions assigned to 𝑓𝑟𝑒𝑚𝑎𝑝
34 Release resources assigned to selected sessions
35 𝑠𝑜𝑟𝑡𝑐 ← Randomly select a sorting criteria
36 Repeat steps 9 - 25
37 if 𝑆𝑢𝑛𝑚𝑎𝑝 = ∅ then
38 Determine cause of temporal VNF IDs
39 𝑐𝑜𝑠𝑡 ← Compute solution’s cost
40 if 𝑐𝑜𝑠𝑡 < 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡 then
41 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡 ← cost
42 Update best solution

43 𝐹𝑖 ← 𝐹𝑖 − 1

44 if vnf_tmp_IDs then
45 Update VNFs IDs

46 Apply mapping and placement configuration

to support the requested traffic flow for each feasible candidate. After-
ward, the algorithm evaluates the impact of the remapping cost on the
set of feasible candidates. Since mapping a VNF instance to a different
7

host may incur additional costs in terms of VNF migrations and SFC
relocations, this procedure attempts to maintain a similar configuration
to the previous placement for as long as possible.

When the selection of a node implies the relocation of a VNF service
request, the mapping procedure first checks if this node has available
instances of the required type from the previous placement. If this is
the case, one of these instances may be reused, and only the operation
cost is incurred related to UPF costs (operation, migration, and new
deployment). Otherwise, the migration or the new deployment cost
component is also present. Like the ILP model, the algorithm considers
a new deployment when the current number of instances of a given
type is greater than before the reconfiguration event. Otherwise, the
algorithm assumes that a VNF instance has been migrated. Since VNF
instances are shared by several SFCs, and this decision is based on the
mapping of the current PDU session, further analysis is required. To this
end, the algorithm assigns temporal IDs to these instances, which helps
determine the real cause of a VNF deployment (i.e., new instantiation
or migration).

At the end of the evaluation process, the algorithm maps a VNF
instance to the candidate location with the lowest cost. This process
continues until all the VNFs in the chain have been evaluated or no
feasible candidate is left. The latter implies the interruption of the
mapping procedure and its classification as failed (lines: 24–25). Once
the SFCR-remapping procedure has finished, the algorithm removes the
selected session from the remapped SFCR set (𝑆𝑟𝑒𝑚𝑎𝑝), and the session
is classified as mapped or rejected (line: 17). The successful mapping
of an SFC requires an update of the network and the infrastructure’s
available resources (lines: 18–23). Moreover, if the number of avail-
able candidates changes, the algorithm updates the subset of available
candidates and the critical level of each SFCR. A change in the number
of available candidates requires that the remaining SFCRs be reordered
(line: 23).

The execution of the last phase of the algorithm depends on the
successful mapping of all the selected SFCRs (lines: 26–46). The main
objectives of this phase are to improve the quality of the obtained
solution and apply the obtained mapping and placement configuration.
This phase begins by determining the best combination of migration
and new deployments for instances with temporal IDs if there are any
(line: 27). This action is required because the algorithm assumes the
cause of a change (i.e., migration or new deployment) during the SFCR
mapping phase based on the mapping of a given session.

The improvement procedure is optional, and it is executed by an
input indicator referred to as flag_improve (lines: 28–43). This phase’s
main objective is to enhance the quality of the generated solution by
introducing some modifications. It starts by determining the cost of the
current placement configuration and setting this cost as the current
best solution. Following this, it performs 𝐹𝑖 improvement attempts.
Each attempt starts by randomly selecting a VNF instance from the
set of VNFs (𝑓𝑟𝑒𝑚𝑎𝑝 ∈ 𝐹 ) and unmapping its assigned SFCRs. The only
condition for selecting this VNF is that it is different from the one
previously analyzed. This is recommended to reduce the chances of
obtaining consecutive improvement attempts with similar outcomes.

For each improvement attempt, the sorting criteria for the SFCRs’
mapping are randomly chosen to promote diversification in the gen-
erated solutions (lines: 35). In this regard, our algorithm offers three
sorting strategies. One is the previously mentioned strategy in phase 3,
which is used to generate the initial reconfiguration solution. Another
is a variant of the aforementioned sorting criteria in which the order
of the number of candidates and access node location parameters have
been exchanged. The final strategy only considers the service latency
requirement. It should also be noted that different approaches can be
defined as desired by the service provider. Following the sorting, the
algorithm generates a new solution by remapping the sessions assigned
to the selected VNF instance (𝑆𝑟𝑒𝑚𝑎𝑝). Similar to the initial solution, the
cause of temporal IDs in the feasible generated solutions (i.e., 𝑆𝑢𝑛𝑚𝑎𝑝 =
∅) is investigated before determining the solution cost. The algorithm
compares the obtained cost with the best cost found so far, and an
update process occurs if a better solution is found. At the end of this
phase, the algorithm removes any temporal VNF IDs and applies the

mapping and placement configuration.
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3.5. Time complexity

The time complexity of the DPC-UPCR heuristic is mainly deter-
mined by the third and last phases of Algorithm 1, as these phases
involve more iterative processes than the first two. Specifically, part
three requires performing S iterations to remap the selected SFCRs

hen considering the worst-case scenario (i.e., 𝑆𝑟𝑒𝑚𝑎𝑝 = 𝑆). The
runtime of the mapping process is dominated by the SFCR-remapping
procedure, which is an adaptation of the SFC-mapping approach pro-
posed in [7]. In the worst case, the time complexity of this phase is
at the level of O(|𝑆| ⋅ |𝑁𝑐 |

2 ⋅ |𝑀| ⋅ |𝐹𝑠| ⋅ |𝐵𝑠|), where |S|, |𝑁𝑐|, |𝐹𝑠|,
nd |𝐵𝑠| indicates the sizes of the sets of SFCRs, available candidates,
NFs and branches forming a service chain, respectively. In addition,

represents the runtime complexity associated with the candidate
valuation process. It should be noted that M cannot be determined
eforehand, as it depends on several factors such as servers and VNF
apacity, UPF specific constraints, and available paths. Hence, the
omplexity of this phase is formulated based on M.

The complexity of the last stage of Algorithm 1 in terms of runtime
epends on the improvement procedure. Each improvement attempt
mplies the analysis of the sessions assigned to the randomly selected
NF instance (𝑆𝑟𝑒𝑚𝑎𝑝). For this set of sessions, its mapped resources
ust be released and phases 2 and 3 must be executed. Given that this
hase can perform 𝐹𝑖 number of improvement attempts, in the worst
cenario, its complexity can be expressed as O(|𝐹𝑖| ⋅ |𝑆| ⋅ |𝑁𝑐 |

2 ⋅ |𝑀| ⋅
𝐹𝑠| ⋅ |𝐵𝑠|). It should be noted that the number of sessions assigned
o a VNF instance is typically much lower than the size of the overall
et of SFCRs (i.e., |𝑆𝑟𝑒𝑚𝑎𝑝| ≪ |𝑆|). In contrast, when no improvement
ttempt is considered (i.e., 𝐹𝑖 = 0), this phase’s complexity is as
imple as O(|𝐹𝑡𝑒𝑚𝑝|), where |𝐹𝑡𝑒𝑚𝑝| indicates the size of the VNF set with
emporal IDs. In the latter case, the complexity of this algorithm stage
s negligible compared to phase three.

The maximum runtime of DPC-UPCR depends on the number of iter-
tions over phase three (𝐹𝑖+1). In this regard, the overall complexity of
he proposed heuristic can be formulated as O(|𝐹𝑖|⋅|𝑆|⋅|𝑁𝑐 |

2 ⋅|𝑀|⋅|𝐹𝑠|⋅
𝐵𝑠|). However, the number of improvement attempts can be omitted in
arge-scale scenarios where the numbers of edge nodes (𝑁𝑐) and PDU
essions are higher (𝑆). In these scenarios, 𝐹𝑖 does not contribute as
uch to the problem size as these other parameters (i.e., 𝐹𝑖 ≪ 𝑁𝑐

nd 𝐹𝑖 ≪ 𝑆). Similarly, the numbers of VNFs and branches (|𝐹𝑠| and
𝐵𝑠|) forming the SFC topologies are, generally, significantly smaller
arameters than 𝑆 and 𝑁𝑐 . Thus, the overall complexity of Algorithm
can be reduced to O(|𝑆| ⋅ |𝑁𝑐 |

2 ⋅ |𝑀|). From this expression, we note
hat the time complexity of the DPC-UPCR is strongly dependent on the
ize of the considered set of SFCRs (𝑆) and candidate locations (𝑁𝑐). For
his reason, the envisioned DPC-UPCR heuristic is a polynomial-time
lgorithm.

. Dynamic UPCR

This section introduces a mechanism to schedule the dynamic read-
ustment of the UPF placement and chaining configuration presented
n Section 3. The proposed mechanism is called the Optimal Scheduler
econfiguration (OSR), and it is based on the principles of OST.

.1. Problem formulation

Given a UPF placement and chaining configuration obtained as a
esult of an initial deployment or a reconfiguration event, in which
ll PDU sessions were mapped according to their service requirements
e.g., latency), we need to consider some degradation in the QoS over
ime. For instance, the QoS may deteriorate in dynamic environments
here users’ locations and points of attachment to the network change
ver time. One cause might be the distance increase with their assigned
NFs (UPFs) due to the absence of nearer VNFs with enough available
8

apacity to attend to the users at their new points of attachment, which
mplies higher propagation delays. More specifically, a service latency
iolation in the user plane occurs when the network response time
xceeds the service latency requirement (i.e., 𝐿𝑠𝑒𝑟 ≥ 𝐿𝑠). We define
𝑠
𝑡 ∈ [0; 1] as a random variable that indicates whether the service
atency of a PDU session s is affected or not at time t.

𝑠
𝑡 =

{

1 if 𝐿𝑠𝑒𝑟 ≥ 𝐿𝑠
0 otherwise (31)

Thereby, the total number of sessions with latency violations at a
given time t (𝐿𝑡) can be defined as follows:

𝐿𝑡 =
∑

𝑠∈𝑁𝑠

𝐼𝑠𝑡 (32)

We also consider that at each time instant t, an agent measures the
QoS offered by the service provider, which in this case has been defined
in terms of the number of sessions with latency violations (𝐿𝑡). This
allows us to obtain a sequence of observations (𝐿1, 𝐿2,… , 𝐿𝑡) over time.
The values of this metric are desired to be as small as possible, being
the QoS optimal when the latency requirement of all the sessions is
satisfied (i.e., 𝐿𝑡 = 0). When the UPF placement and chaining are no
longer optimal (𝐿𝑡 ≠ 0), it must be readjusted to reestablish the system’s
QoS levels. However, these events consume significant resources and
may create additional delays in the user plane and service interruption.
Furthermore, reconfiguration events may produce additional costs due
to the opening of new locations (servers), the deployment of extra
VNF instances, the migration of existing UPFs, and the reassignment of
PDU sessions. Consequently, unnecessary and frequent re-computation
events must be avoided as much as possible and can only be triggered
when strictly necessary. Here, we deal with the problem of determining
the optimal time to initiate a reconfiguration procedure and minimize
its adverse effects.

Moreover, we also assume that the system can tolerate a maximum
number of sessions with latency violations, defined as 𝜃 where 𝜃 > 0,
without needing to trigger a reconfiguration event. In other words, if
the value of the selected metric (𝐿𝑡) is below the established threshold,
the offered QoS is considered acceptable, and no reconfiguration is
needed. However, once this upper bound is exceeded, the QoS is con-
sidered degraded, and the UPF placement and chaining configuration
need to be readjusted. The service provider can define the 𝜃 param-
eter to satisfy service-level agreements related to application types or
subscriber profiles.

The reconfiguration time must be selected so that the value of
the QoS metric is as close as possible to the pre-established upper
bound without exceeding it. In this way, UPF placement and chaining
reconfiguration events can be delayed or avoided, and the QoS is
kept at acceptable levels. In other words, we need to determine when
the system is about to exceed the established threshold to activate
a reconfiguration event in advance and avoid QoS deterioration. To
facilitate the decision process, we present the following cost function:

𝑌𝑡(𝐿𝑡) =
{

𝛹 ⋅ (E[𝑆𝑟] − 𝐿𝑡) if 𝐿𝑡 ≤ 𝜃
𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ] if 𝐿𝑡 > 𝜃

(33)

Here, 𝛹 is a cost component and E[𝑆𝑟] denotes the expected number
of relocated sessions, while E[𝐶𝑟𝑒𝑐 ] is the expected reconfiguration cost,
and 𝜆 is a weight factor to adjust the importance of the reconfiguration
cost.

We define the loss function in (33) as a function of the number
of sessions with latency violations and the maximum QoS tolerance
threshold 𝜃. Specifically, if the number of sessions with latency vio-
lations is below the established threshold, no readjustment is needed,
and the service provider avoids paying its users an amount of money,
𝛹 ⋅ (E[𝑆𝑟]−𝐿𝑡), proportional to the expected number of users with good
QoS that will be affected due to the reconfiguration. In contrast, when
the 𝜃 threshold is exceeded, the placement and chaining configuration
must be readjusted, thus incurring an expected reconfiguration cost
E[𝐶 ].
𝑟𝑒𝑐
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Our objective is to determine the time instance t where we can
top observing the QoS parameter and proceed to reconfigure the UPF
lacement and chaining configuration. In other words, we need to find
he optimal stopping rule that minimizes the expected loss function
33).

roblem 1. Given a sequence of observations defined by 𝐿𝑡, an
pper bound 𝜃 of the accepted tolerance on the QoS and an expected
econfiguration cost E[𝐶𝑟𝑒𝑐 ], determine the optimal decision epoch 𝑡∗,
hich minimizes the cost function 𝑌𝑡:

nf
𝑡≥0

E[𝑌𝑡(𝐿𝑡)] (34)

.2. An optimal scheduling reconfiguration rule

Optimal stopping theory is concerned with the problem of choos-
ng a time to take a given action based on sequentially observed
andom variables to maximize an expected payoff or to minimize an
xpected cost [29]. OSPs are characterized by a sequence of observa-
ions 𝑋1, 𝑋2,… , 𝑋𝑡 whose joint distribution is assumed to be known
nd a sequence of reward/cost functions 𝑌1, 𝑌2, . . . , 𝑌𝑡, where 𝑌𝑡 =

𝑦𝑡(𝑥1, 𝑥2,… , 𝑥𝑡). Namely, an optimal stopping problem can be defined
s follows. A decision maker or agent observes a sequence of random
ariables (𝑋1, 𝑋2,… , 𝑋𝑡) and at each time epoch t, it must decide

whether to stop observing and get the known reward 𝑌𝑡 or continue
and observe the next variable 𝑋𝑡+1. The objective is to stop observing
at the best time instant 𝑡∗ for which the expected reward is maximized
or the expected cost is minimized.

Problem 1 can be modeled as an OSP with infinite horizon where
at each time instant or decision epoch t, one of the following decisions
must be taken:

(i) stop and readjust the UPF placement and chaining configuration
or,

(ii) continue to the next time interval (𝑡 + 1) and keep the current
configuration.

One approach widely used to solve OSPs due to its simplicity and
efficiency is the 1-SLA rule, also called the myopic rule. The 1-SLA
rule indicates at each decision epoch t whether to stop or continue
according to the expected value of the cost function in the next time
instant (𝑡 + 1). Specifically, it calls for stopping at the first time t for
which the cost 𝑌𝑡 for doing it is no more than the expected loss for
continuing one stage and then stopping. Thus, the decision-making at
each stage only depends on the current value of the random variable
and the expected cost in the next stage.

Definition 1. For stopping problems, aimed at minimizing an expected
cost, the 1-SLA rule is described by the stopping time

𝑡∗ = inf {𝑡 ≥ 0 ∶ 𝑌𝑡 ≤ E[𝑌𝑡+1|F𝑡]} (35)

where F𝑡 is the 𝜎-fields generated by the observations 𝑋1, 𝑋2,… , 𝑋𝑡.
Specifically, it represents the knowledge of the random variable 𝑋𝑡 up
to time t.

An essential condition for which the 1-SLA stopping rule is optimal
is that the problem is monotone.

Definition 2. Let 𝐴𝑡 denote the event {𝑌𝑡 ≤ E[𝑌𝑡+1|F𝑡]}. The stopping
problem is monotone if the sets 𝐴𝑡 are monotone non-decreasing,
i.e., 𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 … almost surely.

Namely, a monotone stopping rule problem can be described as
follows: If the 1-SLA rule calls for stopping at stage t due to event 𝐴𝑡,
then it will also call for stopping at all the future stages (e.g., 𝑡 + 1,
𝑡 + 2,. . . ) regardless of the value of the future observations, since 𝐴𝑡 ⊂
𝐴 ⊂ 𝐴 …
9

𝑡+1 𝑡+2
Theorem 1. In monotone stopping rule problems, the 1-SLA rule is optimal.

Proof. Refer to Chapter 5 of [29]. □

In the following, we derive an optimal stopping rule based on the
1-SLA rule to determine the optimal time at which is worst stopping
observing and decide to reconfigure the UPF placement and chaining
configuration.

Theorem 2. Given an upper bound (𝜃) upon which QoS is degraded
and a sequence of latency violations 𝐿1,… , 𝐿𝑡 w.r.t. the last optimal UPF
placement (𝐿0 = 0), the optimal stopping time (𝑡∗) for the problem stated
in (34) is:

𝑡∗ =𝑖𝑛𝑓{𝑡 ≥ 0 ∶ 𝛹 ⋅ (E[𝑆𝑟] − 𝐿𝑡) ≤ 𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ]+

(

𝛹 ⋅ E[𝑆𝑟] − 𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ]
)

⋅
𝜃
∑

𝑙=0
𝑃 (𝐿 = 𝑙)} − 𝛹 ⋅

𝜃
∑

𝑙=0
𝑙 ⋅ 𝑃 (𝐿 = 𝑙) (36)

roof. Given a time interval t where 𝐿𝑡 ≤ 𝜃, the conditional expecta-
ion of 𝑌𝑡+1 at the next stage is given by:

[𝑌𝑡+1|𝐿𝑡 ≤ 𝜃] =E[𝛹 ⋅ (E[𝑆𝑟] − 𝐿𝑡+1)|𝐿𝑡 ≤ 𝜃, 𝐿𝑡+1 ≤ 𝜃] ⋅ 𝑃 (𝐿𝑡+1 ≤ 𝜃)+

E[𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ]|𝐿𝑡 ≤ 𝜃, 𝐿𝑡+1 > 𝜃] ⋅ 𝑃 (𝐿𝑡+1 > 𝜃)

=E[𝛹 ⋅ (E[𝑆𝑟] − 𝐿𝑡+1)|𝐿𝑡+1 ≤ 𝜃] ⋅ 𝑃 (𝐿𝑡+1 ≤ 𝜃)+

E[𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ]|𝐿𝑡+1 > 𝜃] ⋅ (1 − 𝑃 (𝐿𝑡+1 ≤ 𝜃))

=𝛹 ⋅
(

E[𝑆𝑟] − E[𝐿𝑡+1|𝐿𝑡+1 ≤ 𝜃]
)

⋅ 𝑃 (𝐿𝑡+1 ≤ 𝜃)+

𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ] ⋅ (1 − 𝑃 (𝐿𝑡+1 ≤ 𝜃))

=
(

𝛹 ⋅ E[𝑆𝑟] − 𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ]
)

⋅
𝜃
∑

𝑙=0
𝑃 (𝐿 = 𝑙) + 𝜆 ⋅ E[𝐶𝑟𝑒𝑐 ]

− 𝛹 ⋅
𝜃
∑

𝑙=0
𝑙 ⋅ 𝑃 (𝐿 = 𝑙)

Thus, by comparing the current cost, 𝑌𝑡(𝐿𝑡) = 𝛹 (E[𝑆𝑟] − 𝐿𝑡), with
he one expected at the next stage, we obtain that the UPF placement
nd chaining must be readjusted at the first time instance t such that
(E[𝑆𝑟] − 𝐿𝑡) ≤ E[𝑌𝑡+1|𝐿𝑡 ≤ 𝜃]. In other words, it is optimal to stop
hen the current loss is equal or less than the expected cost at the next

tage. □

According to Theorem 1, the stopping rule presented in (36) must
e monotone to guarantee the optimality of the 1-SLA rule.

heorem 3. The 1-SLA rule defined in (36) is optimal and minimizes the
xpected cost defined in (33).

roof. In order the problem be monotone, the difference E[𝑌𝑡+1|𝐿𝑡 ≤
]−𝑌𝑡(𝐿𝑡) needs to be non-decreasing with 𝐿𝑡. This condition is satisfied
ince the right side of inequality (36) remains constant and its left side
s non-increasing over 𝐿𝑡 as long as 𝐿𝑡 is below the predefined QoS
hreshold (𝐿𝑡 ≤ 𝜃). Thus, the problem is monotone and the 1-SLA
ule proposed in (36) is optimal. Please note that when 𝐿𝑡 > 𝜃, we
top immediately and the UPF placement and chaining configuration is
eadjusted. □

. Performance evaluation

This section outlines different experiments we conducted to inves-
igate the performance of the proposed solutions. We first introduce
ome aspects of the simulation environment. We then evaluate the
ffectiveness of the UPC reconfiguration solutions by tuning differ-
nt parameters. Finally, this section analyzes the performance of the
cheduling mechanism.
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Fig. 2. 5G access network topology in a MEC ecosystem.

5.1. Simulation setup

We worked with a network topology representing a 5G medium-
scale scenario (see Fig. 2). This scenario comprises 121 access nodes
and 13 aggregation points (APs), and MEC servers. The gNBs are
connected through APs, which are co-located with MEC servers. The EN
service areas have a radius of 1 km, and the gNB inter-site distances are
500 m and 200 m for gNBs located in urban and dense urban areas, re-
spectively. Some of these servers have already deployed UPF instances.
We determined the initial UPF placement and chaining configuration
through the PC-UPC heuristic proposed in [7]. We executed the PC-
UPC algorithm by placing more importance on the node activation and
deployment costs than on the routing term (i.e., 𝛼 = 0.4, 𝛽 = 0.4,
𝛾 = 0.2).

For the service demand, we considered three types of SFCR, formed
by one to three UPFs. We randomly generated the PDU session require-
ments, such as service latency, processing demand, and bandwidth,
according to the parameters specified in Table 4. We also varied the
number of active PDU sessions in the interval of [5-1000]. Table 4
summarizes the simulation parameters values.

We coded all the proposed solutions (i.e., ILP model and heuristic)
using Python programming language 3.7. The optimal UPCR (O-UPCR)
model was implemented in the Python-based package Pyomo [30], and
Gurobi [31] was selected as its underlying solver. Additionally, we
selected the CityMob [32] mobility pattern generator with a Manhattan
model to simulate user mobility. Moreover, we developed a program
to manage user location and assigned gNB and UPFs over the entire
simulation time. All the experiments were performed on a computer
with 64 GB of RAM and a 3.30 GHz Intel Core-i9 processor.

5.2. UPC reconfiguration solutions

We solved the UPC reconfiguration problem by considering two sets
of weight factors. The first one (weight_set_1) assumes similar weights
for the cost components but omits the reassignment term from the
objective function. The second set (weight_set_2) assumes that all the
cost components need to be optimized and are equally important. Ad-
ditionally, each sample contains ten reconfiguration events performed
by a periodic scheduling mechanism with a reconfiguration time of
10

30 min.
Table 4
Simulation parameters.

Notation Description Value

PDU sessions

𝑆 Number of PDU sessions [5–1000]
𝛽𝑠 Bandwidth requirement (Mbps) [1, 10, 50]
𝐶𝑠 CPU processing demand [0.01, 0.05, 0.1]
𝐿𝑠 Latency requirement (ms) [0.95, 1]

UPF placement

𝑁𝑟 No. of access nodes 121
𝑁𝑐 No. of candidate locations 13
𝐸 Number of links 172
𝑃 Number of shortest paths 1742
𝛽𝑢,𝑣 Link bandwidth capacity (Gbps) 10
𝐶𝑐 Server processing capacity (CPU) 40
𝐶𝑡 VNF processing capacity (CPU) 2
𝐼𝑡 Maximum number of instances +3a

𝑑𝑟 RTT delay in the RAN (μs) 500
𝑑𝑡 Processing time of UPFs (μs) 50
𝑇𝑎𝑝 Processing time of AP (μs) 5
𝑑𝐷𝑁 Processing time of DN (μs) 100
– Prop. delay of links (μs∕km) 5

CityMob

𝑚 Mobility model 2b

𝑛 Number of users 1000
𝑡 Simulation time (s) 36000
𝑠 Maximum speed of users (m/s) 15
𝑑 Distance between streets (m) 100
𝑤𝑥𝑑 Dimensions of the grid (km2) 5 × 5
𝑎 Number of accidents 0

aFor each VNF type the maximum number of instances was determined by adding three
extra instances to the minimum number of VNFs required to meet SFCR’s demands.
bThe m parameter takes numeric values to indicate the mobility model (e.g., m = 2
for the Manhattan model).

5.2.1. DPC-UPCR performance
The following content analyzes the effects of the partial SFC unmap-

ping and the improvement phase on the performance of the proposed
heuristic, with a particular focus on the average reconfiguration cost
and computation time. To achieve this aim, we considered different
numbers of active PDU sessions (i.e., 𝑆 = 50, 𝑆 = 100, and 𝑆 = 200).

Partial unmapping: We performed these experiments by unmap-
ping an additional percentage of SFCs (𝑃𝑟) apart from those with
latency violations at the reconfiguration moment. This additional set of
sections was formed by SFCs closer to exceeding their service latency
budget. Moreover, we also unmapped extra sessions assigned to UPF
instances with a capacity utilization below 20%. Moreover, we did not
consider any improvement phase for the heuristic solution for these
experiments.

Fig. 3(a) illustrates the average reconfiguration cost for different
percentages of additional unmapped sessions for both sets of weight
factors. This figure highlights how the behavior of the cost function
changed notably according to the considered cost components. More
specifically, the reconfiguration cost tended to decrease with the per-
centage of unmapped sessions for the first set of weights that omitted
the reassignment term from (7) (represented in a light blue color).
For all the analyzed groups of SFCs, the highest reconfiguration costs
were obtained when only the sessions with latency violations at the
reconfiguration moment were unmapped. In contrast, the lowest costs
were obtained when unmapping the entire set of SFCRs. This behavior
was expected given that there are more combinations, and therefore
possibilities, of finding better UPF locations and mapping when the
number of unmapped sessions is greater. The latter is sustained by
the behavior of the number of relocated sessions, which increased in
value with the 𝑃𝑟 parameter (see Fig. 4(a)). It should be noted that the
relocation cost is not reflected in the overall reconfiguration cost since
this term was omitted from the objective function. Moreover, greater
values of 𝑃𝑟 also allowed further improvements in the average system
response time. This occurred despite significant reductions in the total
number of deployed UPFs (see Figs. 4(b) and 4(c)).
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Fig. 3. Average reconfiguration cost and computing time for the proposed heuristic
vs. different percentage of partially unmapped SFCs (𝑃𝑟). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

For the second set of weights, represented in a dark blue color, the
behavior of the cost function is a bit more complex, as it does not
immediately seem to follow a clear trend related to the 𝑃𝑟 parameter
(see Fig. 3(a)). Contrary to our initial thoughts, a partial unmapping
resulted in lower reconfiguration costs than a full one in some cases
(i.e., 𝑆 = 50 and 𝑆 = 100). The reason for this is that the number
f relocated sessions increased with the value of the percentage of
nmapped sessions (see Fig. 4(a)). Additionally, for the group of 200
DU sessions, the cost function decreased for values of 𝑃𝑟 ≤ 40. In

contrast, there was a slight increase for 𝑃𝑟 ≥ 50 due to higher variations
in the number of reassigned sessions. Nevertheless, unlike the other
two groups of sessions, the cost obtained for a complete unmapping
was much lower than when only SFCRs with poor QoS were reassigned
(𝑃𝑟 = 0). By more closely examining the relocation and cost functions,
we see that both graphics had similar behavior when the number of
sessions was small (𝑆 = 50 and 𝑆 = 100). This is because the impact of
a relocated session on the normalized cost function is greater when the
number of sessions is small rather than large. This behavior was more
noticeable for S = 100, which experienced scarce improvements in its
total number of deployed instances.

Fig. 4(c) shows that the second set of weight factors presented
higher average latency than the first one. For this set, in particular, the
metric values rose with the 𝑃𝑟 parameter. This behavior was because
the number of UPF instances usually decreased with 𝑃𝑟 and that, unlike
the results obtained for the first set, a considerably lower number of
sessions were relocated.

Regarding the computing time, Fig. 3(b) shows that both sets of
11

weights increased with the percentage of unmapped SFCRs. Thus,
requiring the highest execution time when a complete UPF placement
and chaining readjustment (i.e., 𝑃𝑟 = 100) was considered. Moreover, it
should be noted that the value of this metric is greater for the second
rather than the first set of weights since it required the evaluation of
an extra parameter (i.e., the relocation of an SFCR) when analyzing the
candidate locations.

These results show that a partial rather than complete unmapping
is a more appropriate option when the relocation cost component is
considered and the number of SFCRs is small. More concretely, we
obtained a relatively strong cost performance when considering partial
unmapping with 30%–50% of the sections. In contrast, when this
cost component is omitted, a complete rather than partial unmapping
provides higher reductions in the reconfiguration cost. Nevertheless,
the complete unmapping still produces higher execution times. For both
cases, a partial unmapping of the set of SFCRs may be implemented
when short running times during the UPCR are desired.

Improvement phase:
Regarding the evaluation of the improvement phase on the perfor-

mance of the proposed heuristic, we ran several iterations (i.e., five)
to reflex a more stable behavior. This is recommended given that
each iteration produced a different configuration due to the random
selection of the VNF instances and sorting criteria. Additionally, all the
components in the objective function were assumed to have the same
importance (i.e., weight_set_2).

Fig. 5 depicts the behavior of the average reconfiguration cost and
execution time for different numbers of improvement attempts (𝐹𝑖).
It also includes the results for the heuristic when no improvement
(i.e., 𝐹𝑖 = 0) was considered. Fig. 5(a) shows that the cost of the
solutions was reduced, even in the simplest case, with only one im-
provement attempt in each reconfiguration event. These reductions
in the average reconfiguration cost incremented with the number of
improvement attempts. The latter was more remarkable for the group
formed by 50 SFCRs, which experienced decrements between 1% and
5.6% for the analyzed values of the 𝐹𝑖 parameter compared with the
version of the DPC-UPCR with no improvement. For the other two
groups of SFCRs, the reductions were not as significant as in the case
of 𝑆 = 50 SFCRs because the quality of their reconfiguration solutions
was closer to the optimal one, with an optimality gap of 5%. Please
refer to 5.2.2 for more details in this regard.

However, these improvements occurred at the expense of higher
execution times for the reconfiguration events, which incremented with
𝐹𝑖 (see Fig. 5(b)). For instance, the execution times for 𝐹𝑖 = 15 in
relation to the non-improved reconfiguration solutions (𝐹𝑖 = 0) were
between four and seven times greater than those for the selected SFC
groups.

5.2.2. UPCR solutions performance
This subsection evaluates the performance of the conceived ILP

model (O-UPCR) and DPC-UPCR heuristic. For the heuristic, we de-
fined two variants depending on whether or not the improvement
phase was considered. When no improvement attempt is contemplated
(𝐹𝑖 = 0), we refer to this solution as a basic version of the DPC-
UPCR (BDPC-UPCR). Otherwise, we call it the improved DPC-UPCR
heuristic (IDPC-UPCR). These names are only for notation convenience,
but both solutions derive from the proposed heuristic. For the IDPC-
UPCR, 15 improvement attempts were defined (𝐹𝑖 = 15). Additionally,
we determined the solutions to the ILP model with a zero optimality
gap.

We compared the BDPC-UPCR with two baselines referred to as
Greedy- and Sorted Greedy-UPCR (i.e., G-UPCR and SG-UPCR). These
baselines are greedy-based approaches that map each SFCR to the VNFs
and candidate locations that minimize the objective function of the
UPCR problem in (7). The G-UPCR does not implement any sorting
criteria to map SFCRs, whereas the SG-UPCR follows the same criteria
as the proposed heuristic. Moreover, they do not consider the effects

of a VNF mapping decision on the next VNFs that form the SFC, which
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Fig. 4. Performance of the proposed heuristic with partial unmapping in terms of relocated sessions, deployed VNF instances and average latency.
Fig. 5. Average reconfiguration cost and computing time of the proposed heuristic vs.
different number of improvement attempts.

may result in the rejections of some SFCRs during their mapping proce-
dure. We extended both baselines to include a reassignment procedure
to avoid rejections and ensure similar comparison conditions. This
procedure moves back a step in the SFCR mapping process by selecting
a different candidate to serve the last mapped VNF in the chain. The
reassignment procedure is executed when a VNF cannot be mapped due
to the absence of feasible candidates, and it is repeated until the current
VNF has been successfully mapped or no feasible candidate is left to
remap the previous VNF.
12
Table 5
Solutions summary.

Name Solution approach Pa Bb

O-UPCR ILP model ×
BDPC-UPCR DPC-UPCR heuristic with 𝐹𝑖 = 0 ×
IDPC-UPCR DPC-UPCR heuristic with 𝐹𝑖 = 15 ×
G-UPCR Greedy-based heuristic ×
SG-UPCR Greedy-based heuristic ×

aP: proposed solution.
bB: baseline solution.

Table 5 summarizes all the solutions understudy in this subsection
by specifying their solution approach and whether they are part of our
proposal or a baseline. Please note that all these solutions consider a
full unmapping of the SFCR set and seek to minimize the objective
function (7). Furthermore, we investigated their performance in terms
of average reconfiguration time and overall normalized reconfigura-
tion cost for different demands of PDU sessions. We also analyzed
the number of reassignment events when comparing the BDPC-UPCR
with the baselines. For these experiments, all the cost components
in the objective function were considered to be equally important
(i.e., weight_set_2).

Fig. 6 represents the normalized reconfiguration cost, number of
reassignment events, and computing time for the BDPC-UPCR and both
greedy approaches. These results indicate that the proposed heuristic
outperformed the baselines for all the analyzed metrics. The BDPC-
UPC solution always provided the lowest reconfiguration cost with
significant differences in relation to the benchmarks. In the best case,
it achieved reductions up to 24% for GH-UPCR and 21% for SGH-
UPCR. In addition, BDPC-UPC was always able to map all the SFCRs
without requiring any reassignment procedure, while the number of
reassignment events triggered by the baselines increased with the
number of PDU session requests. Additionally, Fig. 6(c) shows that the
benchmarks had similar running times. Moreover, their differences with
our proposed heuristic were more remarkable as the size of the SFCR
set increased because they were required to perform more reassignment
events to avoid SFCR rejections.

Fig. 7(a) depicts the average reconfiguration cost of the O-UPCR,
BDPC-UPCR, and IDPC-UPCR solutions for increasing demands of
SFCRs. This figure demonstrates how the performance of the heuristic
in its simplest version (i.e., BDPC-UPC) was always within 15% of the
optimum, with an average optimality gap of 7.27%. This difference
was further narrowed by incorporating the improvement phase and the
selected value of the 𝐹𝑖 parameter (i.e., 𝐹𝑖 = 15). More specifically, the
average optimality gap for this approach was 4.25% of the optimum,
with a difference of 8.62% in the worst case (i.e., 𝑆 = 50). It should
be noted that higher reductions were achieved for values of 𝑆 ≥ 100
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Fig. 6. Performance of the proposed heuristic vs. greedy approaches.

since there were a greater number of deployed VNFs and thus of
possibilities for mapping the selected SFCRs. The results show that the
proposed improvement approach allows for significant enhancements
in the quality of the reconfiguration solutions with near-optimal results.

Fig. 7(b) summarizes the average runtime of the proposed solutions
in terms of CPU. This figure illustrates how the computational time
for all solutions increased with the number of SFCRs. As was expected,
the ILP model required the highest execution time, whereas the BDPC-
UPC was the fastest approach. In general, the basic heuristic approach
was between 4–9 and 10–22 times faster than its improved version
and the mathematical model, respectively. Moreover, both heuristics
scaled well with increasing numbers of SFCRs, while the O-UPCR’s
running time raised considerably until the point of stopping finding
solutions to the problem, in a reasonable time, for SFCRs greater than
200. Regarding the wall-clock time parameter, it should be noted that
the ILP model took several hours to perform a reconfiguration event for
instances of the problem with more than 150 PDU sessions, while the
heuristic approaches only required a few seconds.

5.3. Dynamic scheduling mechanisms

To verify the effectiveness of the proposed scheduling mechanism,
we established the following benchmarks:

• Periodic Scheduling Reconfiguration (PSR): The UPC readjust-
ment is executed periodically at fixed time intervals (i.e., every
30 and 60 min).

• Skeptical Scheduling Reconfiguration (SSR) [13]: The UPC is
reevaluated in relation to a maximum threshold of allowed la-
tency violations (𝜃). Similar to the proposed mechanism (OSR),
its objective is to tolerate as many latency violations as possi-
ble, at each sampling time, without exceeding the established
QoS threshold. However, the SSR approach expresses the re-
configuration cost regarding the expected number of relocated
sessions.
13

t

Fig. 7. Performance of the proposed solutions vs. different number of SFCRs.

For these simulations, we ran the system for ten hours and measured
the established QoS metric with a sampling time of one minute for
600 samples. We analyzed the performance of the aforementioned
scheduling mechanisms based on the following metrics: the number of
reconfiguration events, the number of latency violations at the recon-
figuration moment, and QoS status at each sampling time. To estimate
the number of relocated sessions and reconfiguration cost for the OSR
model, we used the results obtained from the periodic reconfiguration
with a period of 30 min between each reconfiguration event (PSR_T30).
Moreover, we selected an upper bound (𝜃) on the QoS metric of 3%
of sessions with latency violations for the SSR and OSR mechanisms.
The number of sessions with latency violations was modeled as a
Poisson distribution with a mean of 𝜆 = 27. This distribution was
fitted on observed latency violations for a UPC configuration without
readjustment for two hours.

To meet the established sampling time, the used UPC reconfigu-
ration solutions must be able to determine the new configurations in
less than a minute. Following this criterion, we adjusted the proposed
heuristic for a partial unmapping with 30% of additional sessions and
one improvement attempt (i.e., 𝑃𝑟 = 30 and 𝐹𝑖 = 1). Furthermore,
these experiments were conducted by considering both sets of weights
(weight_set_1 and weight_set_2) in the objective function.

5.3.1. Reconfiguration events
Fig. 8 depicts the number of reconfiguration events and the number

f sessions with latency violations at the time of the reconfiguration
rocedures. To provide a more intuitive and legible representation, we
lassified the number of latency violations into three groups in relation

o the 𝜃 value (low, medium, and high). These groups were represented
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Fig. 8. Number of reconfiguration events w.r.t. QoS values at the reconfiguration moment for different scheduling mechanisms and sets of weight factors. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. QoS status for different scheduling mechanisms and sets of weight factors.
with different shades of blue color (from light to dark). This figure
highlights how our proposed mechanism not only performed the fewest
number of reevaluations for both pairs of weight sets but also triggered
these events when the QoS threshold was close to being exceeded. Simi-
larly, the SRR benchmark never readjusted the placement and chaining
configuration when the number of sessions with latency violations was
low. However, it triggered twice and five times more reconfiguration
events than the OSR solution for the first and second pair of weights,
respectively.

In contrast, most of the reconfigurations performed by the periodic
approaches were executed when the number of sessions with a poor
QoS was low. Specifically, more than 60% and 40% of the reconfigu-
rations for the PSR_T30 and PSR_T60 benchmarks, respectively, were
triggered when 𝐿𝑡 ≤ 𝜃∕2. In general, the OSR mechanism reduced the
number of reconfiguration events between 65%–85% and 30%–70%
compared to PSR_T30 and PST_T60, respectively.

5.3.2. QoS metric
Fig. 9 summarizes the status of the QoS in relation to the established

upper bound. This figure demonstrates that the OST-based solutions
(i.e., OSR and SSR) had the best performances. For these two mech-
anisms, the QoS metric was above the established threshold only one
time for the first set of weights and never for the second one. Thus, they
were able to keep the QoS under the desired values for almost the entire
14

simulation time in both cases. In contrast, the periodic schedulers had
the worst results since they produced a higher number of violations of
the established QoS threshold. For both sets, the PSR_T30 resulted in a
poor QoS around 1% of the simulation time despite requiring a higher
number of reconfiguration events. Additionally, the PSR baseline with
UPC readjustment every hour had a greater number of events with a
poor QoS. More specifically, the PSR_T60 mechanism resulted in a poor
QoS around 7.3% of the simulation time for the first set and 4.2% for
the second one.

Fig. 10 illustrates the instantaneous and cumulative values of the
QoS metric over time for both sets of weight factors. It also represents the
reconfiguration moments through dashed gray lines. This figure shows
how the OSR mechanism always triggered the reconfiguration when the
number of sessions with a poor QoS was close to the established upper
bound. With our proposed solution, the QoS threshold was exceeded
only one time, and a reconfiguration process was immediately exe-
cuted. In contrast, when the number of sessions with latency violations
was small, no reconfiguration was required by the OSR. The SSR so-
lution showed similar behavior. However, this method produced more
readjustment events than our proposed scheduler. The cause for this lies
in the method’s stopping rule, which decides to reconfigure at lower
values of the QoS parameter. Moreover, by more closely examining
the representation of the reconfiguration events, we can observe that
the SSR and OSR schedulers did not have a fixed frequency. Both
approaches depend on the values of the selected QoS metric, which is

a random variable.
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Fig. 10. Number of sessions with latency violation and their cumulative sum per time instance for partial heuristic with P = 40 and not improvement phase.
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Regarding the cumulative sum of sessions with latency violations, our
roposed mechanism had lower values than either variant of the PSR
espite performing fewer reconfiguration events. This is because it was
ble to keep the QoS parameter under acceptable values the whole
imulation time, not being the case for the periodic approaches since
hey are unaware of the status of the QoS metric. Additionally, the PSR
ethod with a reconfiguration period of 60 min (PSR_T60) had the

reatest number of sessions with latency violations. These results were
xpected given that this approach is not only unaware of the QoS status
ut also takes a greater amount of time between reconfigurations.

. Conclusion

This paper addresses the problem of dynamic UPF placement and
haining reconfiguration in a MEC ecosystem. We have formulated the
roblem as an ILP model targeted at reducing the total reconfiguration
ost. This cost is expressed as the combination of multiple cost com-
onents such as server activation, SFC relocation, and VNF migration.
he objective of this model is to determine the optimal SFCR mapping
nd UPF placement configuration to minimize the overall cost while
nsuring 5G stringent latency requirements along with UPF and SFC
pecificities.

We present a heuristic algorithm (DPC-UPC) to confront the model’s
omputational complexity and provide online solutions to the problem.
e evaluated the performance of the proposed heuristic by comparing

t with two greedy approaches and the optimal solution. The results
emonstrate that DPC-UPC outperformed both heuristics in terms of
econfiguration cost, execution time, and the number of reassignment
vents. Furthermore, DPC-UPC was able to provide near-optimal solu-
ions in considerably less time than the benchmarks. More concretely,
15

a

e determined solutions to the problem with average optimality gaps
f 7.27% and 4.25% when the improvement phase was omitted and
onsidered, respectively.

Additionally, we envisioned a scheduler mechanism, OSR, based
n OST to determine the optimal UPCR time according to the estab-
ished QoS threshold and instantaneous values of the selected metric
i.e., the number of sessions with latency violations). The conducted
xperiments revealed significant improvements in the offered QoS and
he number of reconfiguration events as compared with the baselines.
ore specifically, OSR not only offered the best QoS by keeping the
oS metric under the desired values for almost the entire simulation

ime but also required the minimum number of reconfiguration events
i.e., with reductions between 30% and 85%).

Directions for future research include designing a reconfiguration
echanism to pre-determine placement and chaining reconfigurations

apable of adapting to future user locations (i.e., anticipatory UPC
econfiguration based on mobility predictions) to reduce the impact of
he reconfiguration events on the QoS and the QoE of the users.
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