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Abstract—Network Function Virtualization (NFV) has recently
attracted telecom operators to migrate network functionalities
from expensive bespoke hardware systems to virtualized IT
infrastructures where they are deployed as software components.
Scalability, up-gradation, fault tolerance and simplified testing
are important challenges in the field of NFV. In order to over-
come these challenges, there is significant interest from research
communities to scale or decompose network functions using the
monolithic and microservice approach. In this paper, we compare
the performance of both approaches using an analytic model and
implementing test-bed experiments. In addition, we calculate the
number of instances of monoliths or microservices in which a
network function could be scaled or decomposed in order to get
the maximum or required performance. Single and multiple CPU
core scenarios are considered. Experimentation is performed by
using an open source network function, SNORT and running
monoliths and microservices of SNORT as Docker containers
on bare metal machines. The experimental results compare the
performance of monolith and microservice approaches and are
used to estimate the validity of the analytic model. The results
also show the effectiveness of our approach in finding the number
of instances (monoliths or microservices) required to maximize
performance.

Index Terms—Network Functions; Performance; VNF Mono-
liths; VNF Microservices; VNF decomposition

I. INTRODUCTION

In recent years, monolithic and microservice approaches for
deploying applications have been successfully implemented in
the field of cloud computing [1]. In the case of the monolithic
approach, an application is deployed as a single software
package that offers tens or hundreds of services. However,
in the microservice approach, an application is decomposed
into a set of independently deployed smaller sub-components
(i.e., microservices) in which each sub-component does a small
and simple task, and communicates through well-defined, light
weight mechanisms.

Many cloud computing companies, such as Netflix and
Amazon, have been deploying their applications using the
microservice approach. For these companies, the microservice
approach offers following main advantages [2]:

1) Scalability: The various components of an application
have diverse performance footprints. Thus, some com-
ponents might be more resource intense than others. In
comparison to the monolithic approach, the microservice
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approach provides an efficient way of scaling up only
resource intense components.

2) Up-gradation: Since small applications can be upgraded
independently in short time, upgrading microservices is
a lot easier and less disruptive (e.g., in terms of down-
time) than upgrading an entire monolithic application.

3) Simplified development: The microservice approach fos-
ters software re-usability in building different applica-
tions. It is easier to re-use smaller code fragments (i.e.,
microservices) than a large code base (e.g., monoliths).
They can even be written in different programming
languages. Evidently this simplifies the software devel-
opment process, especially for the big code-development
teams.

4) Simplified testing: Since the feature set of a microservice
is much less compared to a monolithic application, it
is easier to test and debug service components. Testing
the overall service, however, might be more complex
though.

5) Fault tolerance: When a critical failure (e.g., a segmen-
tation fault) happens in a monolithic application, the
whole application goes down. In case of microservices,
however, only a small subset may be affected if a failure
happens to a single or a subset of microservices.

In addition to aforementioned advantages, a microservice
approach might introduce the following overheads compared
to the monolithic approach:

1) Decomposition overhead: The microservice approach
requires an application to be decomposed. Today, this
is usually considered more complex and introduces ad-
ditional efforts as compared to the monolithic approach.
In the monolithic approach, these additional overheads
are not there, as an application is not required to be
decomposed.

2) Orchestration overhead: Orchestrating (i.e., coordinat-
ing, deploying, configuring, and managing) a set of
microservices that constitute the overall service, may
result in a larger overhead compared to orchestrating a
single monolithic application as the number of managed
entities is increased.

3) Communication overhead: Since microservices are
loosely coupled and possibly distributed over a large set
of physical or virtual hosts, they need to communicate
over well defined APIs and protocols. Evidently, this
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increases communication costs.

4) Integration testing overhead: Since the communication
patterns and protocols are more complex (e.g. due to
asynchronous communication), integration tests might
become cumbersome. This introduces a significant test-
ing overhead and calls for a strict automated testing.

Today, microservices are mostly considered in the context
of traditional software systems, such as web and cloud ap-
plications. Recently, however, this approach has also raised
significant attention in the field of Network Function Virtual-
ization (NFV) [3]. In NFV, network functions, such as load
balancer, intrusion detection, and network address translation,
which usually run on specialized, proprietary hardware, are
implemented as software components on top of custom-off-
the-shelf cloud infrastructure [4].

In this paper, we define microservice as a decomposed
component of a network function and define monothith as a
virtual network function that is run as a single instance. We
deploy network functions using the monolithic and microser-
vice approach and compare the performance of both monoliths
and microservice version of network functions using a simple
analytic model and experimental results.

An M/M/1 queuing model is considered in order to estimate
the performance using an analytic model. Without loss of gen-
erality while maintaining low complexity, we make use of an
M/M/1 model and verify the suitability of this model through
experimental results. We first provide the mathematical for-
mulations for the performance (in form of average delay) of
the monolithic and microservice version of network functions.
We then calculate the number of instances of monoliths and
microservices required to get maximum performance. We also
experimentally calculate the performance using an open source
network function, SNORT [5] and running monoliths and
microservices as Docker containers on bare metal machines.
The experimental results compare the performance of monolith
and microservice approaches and verify the mathematical
formulations. In addition, the experimental results verify the
value of the number of instances for scaling or decomposition,
given by the analytic model, with respect to experimental
results.

Section II presents the mathematical formulations for the
performance of network functions. Section III describes the
experimental setup and Section IV provides results. The re-
lated work is provided in Section V and finally, Section VI
concludes the paper by summarizing the main results.

II. PERFORMANCE OF NETWORK FUNCTIONS

In this section, we first derive the performance of the
network function (NF) considered by using the analytic model
and then calculate the performance when the NF is deployed
using the monolithic and microservice approach implemented
in an experimental testbed. Four different cases to deploy
the NF are considered. These cases are: (1) Single CPU n-
monoliths scaling, (2) Dedicated CPU n-monoliths scaling,
(3) Single CPU n-microservices case and (4) Dedicated CPU
n-microservices case. The former two cases are related to

the monolithic approach and the later two are related to the
microservice approach. We use queuing theory to model a
network service, where an NF is modeled as a queuing system
and its serving capacity is represented by the computational
resources, i.e., CPU, used by the NF.

We use an M/M/1 queuing system to model an NF, as we
assume that the NF is a single threaded function and run
on one server. Our aim is to use a rather simple model but
capable of providing us useful performance evaluation so that
we find good parameters to take into account when scaling or
decomposing a network function.
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Fig. 1. Network Function (NF) Deployment

A. Considered Network function

Fig. 1A depicts the considered NF which has an incoming
traffic rate A and service rate u. We assume that traffic arrives
according to the Poisson process and serviced according to
an exponential distribution. Let T" be the average service time
per packet. Then, p is given by % Here, T' also includes
the average idle time () per packet, which may be due to
operations such as input-output operations and state reading
time. Hence, T' = ¢t + I, where ¢ is the service time if there is
no idle time. Note that if idle time is greater than O, the CPU
allocated to the NF will not be utilized fully. Hence, CPU
utilization will always be less than 100%.

When considering an M/M/1 queuing model [6], in order
to calculate the performance of the NF, the average delay per
packet, denoted as D, is given by:

1 1

D= = 1
(h=2)  F-A o

B. Network Functions Deployment

In the following subsection, we describe the four cases in
which an NF can be deployed.

1) Single CPU n-monoliths scaling: Fig. 1B describes the
single CPU n-monoliths case in which an NF is scaled into n
separate NF instances (N F';, where ¢ = 1,2, ..n) and a single
CPU (i.e., CPUy) is allocated to process all the instances.
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We assume that the incoming traffic is equally distributed
among separate NF instances hence, the average traffic arrival
rate per NF instance is be given by % Let the average service
rate in this case be ;27°"° and if we again assume an M/M/1
queuing model, the average delay per packet is given by:

1

(u2fire =)

Dy = 2

For the case in which there is no idle time and also no
overhead due to this scaled version of monoliths, the average
delay of a packet will be equal to the delay D given in

subsection II-A. Hence, in this case, /"¢ is derived as:

plfre = 1A ©
n

For the case in which there is idle time or also overheads
(e.g., due to traffic distribution among NF instances and con-
text switching), the average delay per packet will be different
than the delay given in subsection II-A. For simplicity, we
assume that each NF; has an equal average idle time of [
per packet. Let O™ denote the average time spent due to
traffic distribution among different NF instances and context
switching. Hence, when an NF is idle, another NF can utilize
the CPU. Therefore, the average service time in this case is

given by:

1 1
Tsngono = (n—1)A E ( ) Oé‘z/[r(z)n (4)
= = i=0

and thereby, the average service rate (u29") is given by the

inverse of the average service time 1/72°"° We can now

calculate the average delay per packet as:

1 1
Dl = (Iu]\lona _ A) =

>

( nT _({Lfl)l +OJWO71) ’I’L)
o)

2) Dedicated CPUs n-monoliths scaling: Fig. 1C describes
the dedicated CPU n-monoliths case in which an NF is scaled
into n separate NF instances and each NF gets a dedicated
CPU (CPU;.... or CPU,).

For calculation, we assume that traffic is equally distributed
among different NFs and the traffic arrival rate per NF can be
given by £ A Let the time spent in distributing traffic among
different NFs is given by overhead O}mo. The average
service time per packet would be 1"+ O%eof" and thereby, the
average service rate per NF (u}{°m°) is given by #}W

Note that 7" includes the idle time (I) in above calculations.

Again, if we consider the M/M/1 queuing model, the
average delay per packet is given by:
1 1
D2 = Mono N 1 A (6)
(hped® = 3) (W%I&?" -2)

3) Single CPU n-microservices case: Fig. 1D describes the
single CPU n-microservices case in which an NF is decom-
posed into n microservices (1451 ...445,) and all n microservices
are processed by a single CPU (i.e., CPUx).

Let the average service rate and time of a microservice
be u’;};c; ¢ and T”“f]”’ respectively. For a tandem queuing
network [6] of microservices, the average delay of a packet is
given by:

n n
Ds = = (N
(5 =) (gters — A)

sin

For the case in which there is no idle time per micro-service
and also no overhead due to the microservices or context
switching, the average delay of a packet will be equal to the
average delay (D) given in subsection II-A. Thereby, the value
of p/er in this case is given by nu — (n — 1)\,

For the case in which there is idle time per microservice or
also overheads (e.g., due to context switching and microser-
vices overheads), the average delay can be assumed to be
different than the delay given in section II-A. For simplicity,
we assume that each microservice waits for an equal amount
of idle time and is given by L 1et O™icro be the time spent

in additional overheads (i.e., due to microservices and context
switching). The service time is therefore given by:

1 n—11
Tmz("r‘o — _ O'ﬂll("f‘o 8
sin TZ,/L _ (n _ 1)A n 2 sin ( )

By putting this value in Eq. 7, the average delay of a packet
in the single CPU n-microservice case is given by:

n
D3 = T X
1 171 micro
oy~ 5O, )
1
= T ‘ —
T — (- D)3 tn0TEe T

4) Dedicated CPUs n-microservices case: Fig. 1E de-
scribes the dedicated CPU n-microservices case where an
NF is decomposed into n microservices (usi...us,) and a
dedicated CPU (i.e., C PUj;) is allocated to each microservice.

As n CPUs are provided for n microservices, the average
service time (T"””O) per microservice in this case should be
reduced by n (i.e., it should be equal to Z). However, there are
some additional overheads (O3¢7°) due to microservices (e.g.,
header extraction in each microservice, bandwidth overheads
etc.). Therefore, the average service time of a microservice

(Tricroy will be given by L 4 Qmicro,

For a tandem queuing network of microservices, the average
delay will be given by:

n 1
D4 f— P — f— 1 A
n

micro 3 -
T+nORIg THnOpicre

(10)
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C. Number of instances (n) of monoliths or microservices

In this subsection, we calculate the value of n for all the
above four cases so that we can achieve maximum or required
performance (in form of delay). For the single CPU cases, we
can achieve performance gain without increasing the number
of resources (i.e., due to idle time we discussed above). In
order to achieve the maximum performance in these cases, the
average delay given by Eq. 5 and Eq. 9 should be minimum.

However, for the dedicated CPU cases, we need to dedicate
additional resources in order to gain more performance. Hence,
in these cases, the minimum number of resources could be
selected, so that we can achieve the required performance (i.e.,
there is no need to achieve minimum performance in these
cases).

In this paper, we use a graph based method to find the
minimum or required value of the average delay. In this
method, if all the values except n and D, D;, Do, D3, Dy in
Eq. 5, Eq. 6, Eq. 9 and Eq. 10 are known, the graph is plotted
where y axis is represented by the average delay and x-axis
is represented by the number of instances of monoliths or
microservices (n). The value of x is chosen from the graph
that represents the minimum or required value of the average
delay. This value gives the number of instances in which a
network function should be scaled or decomposed in order to
achieve minimum or required performance.

III. EXPERIMENT SETUP

In this section we will discuss the experiment setup used
to find the performance of the monolithic and microservice
approaches described in this paper.

In an NFV architecture, when deploying VNFs through a
microservice approach, the VNFs can typically be function
based or rule based. It would be easier to decompose a large
and complex (in terms of functionality) VNFs (e.g., Virtual
EPC and IMS) based on functions. However, if a VNF (e.g.,
forwarder) is small in terms of functionality, it would much
easier to decompose such VNFs into rule based. There are
several VNFs which are rule based such as forwarder, routers
or IDS, and the rule based creation of microservices is a
perfect example of simplicity and easy way to decompose
network functions using a black box approach. In this paper,
we perform the experimentation based on rule based decompo-
sition. We used the Intrusion Detection System - SNORT - as
a network function [5] and deployed it in four ways discussed
in section II.

SNORT contains the number of rules combining signature,
protocol and anomaly inspection methods to detect a malicious
activity. We have added 200 such rules in a single SNORT
NF, which is deployed on a single Docker container. Then,
packets are forwarded according to the Poisson distribution.
Each packet has 1000 bytes size and is matched against each
rule in the SNORT and if a malicious activity is present, it
is written in an alert file. Therefore, if malicious activities
are reported by many rules, SNORT writes many alerts in
the file for a single packet, taking long time in input/output
operations. Hence, it increases the idle time of the SNORT NF.

We randomly generated traffic producing different malicious
activities and calculated the idle time by having 200 such rules
in SNORT. We ran 50 different experiments (with different
traffic characteristics) and calculated the average idle time.
The average idle time (I) in our experiments was 0.248 ms.

In case of the single and dedicated CPU n-monoliths scaling
case, n instances of the SNORT NF are deployed on a machine
and traffic is equally divided among all the instances using a
load balancer. Here, each instance and load balancer are run
on a separate Docker container. In the single CPU n monolith
case, all the n instances and load balancer are dedicated on
a single CPU. However, in the dedicated CPU n-monoliths
scaling case, each instance is given a dedicated CPU core.

In case of the single and dedicated CPU n-microservices
case, the SNORT NF is decomposed into n sub-components,
where each sub-component (i.e., microservice) contains 200
rules and connected with another sub-component (i.e., mi-
croservice) in a tandem network. Here, each sub-component is
run on a separate Docker container. In case of the single CPU
n-microservice case, a single CPU core is allocated to forward
traffic through all the sub-components (microservices). How-
ever, in case of the dedicated CPU n-microservice case, each
microservice has given a dedicated CPU core.
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Fig. 2. Experiment setup

In our experiments, we varied n from 1 to 16 and followed
the M/M/1 average model, where the incoming traffic rate is
always kept less than the service rate. Our bare machines setup
uses three machines and is shown in Fig. 2. We used a UDP
traffic generator running on one machine directly connected to
the other machine running SNORT, which inspect all the traffic
going through it to the traffic receiver running on the third
machine. We deployed our m-monolith and n-microservice
cases in the second machine.

Each of the machine runs Ubuntu 16.04 on Intel Xeon
Processor E5-2640 with 16 CPU Cores, 2.4GHz processor
base frequency and a RAM of 125Gb. As shown in Fig. 2,
traffic Generator is a simple UDP packet generator which
generates packets following a Poisson distribution. For our
experiments we have pinned the Docker containers to single
or multiple CPU cores as per the case scenarios discussed in
Section II. Each machine in the setup has a direct connection
to each other using 10Gbps link. The traffic rate A for the
experiment is 0.97 per ms, considering no packet loss due
to network link congestion. This choice of parameters is
according to the M/M/1 queuing model with a stable queuing
system where the incoming traffic rate (\) should be less than
service rate. The choice of the arrival rate is to exploit the
dedicated processing capacity, yet having a stable queue by not
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exceeding the allocated service time, given by the processing
capacity.

IV. RESULTS

In this section, we first present the results obtained through
the mathematical calculations obtained in Section II and then
give the results obtained through experimentation performed
on a SNORT NF running on Docker containers (as described
in the previous section). We then compare experimental and
mathematical results.

A. Analytical results

In order to calculate the average delay for n-monolithic and
microservice case (where n > 1), we need to know the value
of T, A\, I and overheads. We already know the value of A and
I through our emulation scenario (described in the previous
section). The value of T is calculated from Eq. 1 by putting
the value of A and the average delay observed by running the
experiment (mentioned in the previous section) on a single
SNORT NF. So, we now calculate the value of overheads
for different values of n. We then calculate the value of the
average delay.

1) Overheads: Overheads in case of the single CPU n-
monolithic case are traffic distribution overheads and context
switching overheads. However, overheads in case of the single
CPU n-microservice case are context switching overheads and
microservices overheads (such as header translation at each

microservices, communication overheads etc.).
16

Fig. 3. Overheads for n—monoliths and n—microservices in case of a single
CPU
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The value of context switching overheads are taken by
running the experiment of the single CPU n-monoliths and
microservices cases (described in the previous section) on bare
metal machines. We depict these overheads in Fig. 3. Fig. 3
shows that context switching overheads in case of the single
CPU n-monolithic case are more than the overheads in case
of single CPU n-microservices. These overheads are more
in case the monolithic case because the monolithic function
is a large application and may need to copy more number
of state variables in context switching. On the other hand,
as microservices are small functions, less number of state
variables may be needed to be copied in context switching.

In our experiment results, we found that traffic distribution
and microservice overheads are multiple of the number of

instances of monoliths or microservices. This is because as the
number of instances of monoliths or microservices increases,
the traffic distribution and microservice overheads increase. In
addition, the traffic distribution overhead is smaller than the
microservice overhead. This is because in traffic distribution,
the overheads are just due to redirecting traffic to a particular
instances, however, in microservice overheads, the overheads
are due to many factors such as header translation at each
instance, bandwidth overheads etc. In our experiments, the
traffic distribution overhead is about 0.0005 ms for two mono-
liths (i.e., for n = 2) and the microservice overhead is about
0.002 ms for two microservices (i.e., for n = 2). Hence, for
a high value of n, these overheads are the overheads when n
equal to 2 and multiplied with n/2. The overall overheads are
then calculated by adding this value with the context switching
overheads. The overall overheads are also shown in Fig. 3.
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Fig. 4. Overheads for n—monoliths and n—microservices in case of the
dedicated CPU cases

In case of the dedicated CPU n— monolithic case, there are
only traffic distribution overheads and in case of the dedicated
CPU n— microservice case, there are are only microservices
overheads. These overheads are shown in Fig. 4.
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Fig. 5. Average delay mathematical results

2) Average Delay calculations: Fig. 5 shows the compari-
son of the average delay we calculated using the mathematical
calculations presented in Section II. If overheads in case of
the single CPU n-monoliths (OMonoy and microservice case

sin
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(nOMicroy are equal, the average delay given by Eq. 5 and Eq.
9 are equal. Therefore, we depict only a single line in Fig. 5 for
both of these cases of the single CPU. In addition, if overheads
in case of the dedicated CPU n-monoliths (O%[e"d”") and n-
microservice cases (nOMi57) are equal, the average delay
given by Eq. 6 and Eq. 10 are equal. Hence, we again depict
only a single line in Fig. 5 for these two cases of dedicated
CPU.

In our mathematical results, we calculate the average delay
for the overheads value 0, 0.005, 0.01, 0.015 and 0.02 ms
using Eq. 5 and Eq. 10.

Fig. 5 shows that if the overhead is 0 ms, the average delay
decreases in case of the single CPU when we increase n (i.e,
the number of instances) from 1 to 16. This is because if the
number of instances (monoliths or microservices) increases,
the total idle time of the CPU (in case of a single CPU) will
decrease. This is due to the fact that when one instance is idle,
the other instance can take the CPU. For the case when the
overhead value is 0.005 ms, the average delay decreases until
we increase the number of instances to 8 and after that it starts
increasing. In addition, if we keep the overhead as 0.01 ms,
the average delay decreases until we increase the number of
instances to 4. For the rest of the overhead values, the average
delay decreases until we increase the number of instances to
2.

For the dedicated CPU case, as we have dedicated CPU per
instance, we always get short average delay when we increase
the number of instances from 1 to 16. However, this short
delay is in the cost of dedicated CPUs.

Note that in real scenarios, the overhead value varies as we
increase the number of instances (i.e., n). Therefore, in order
to choose the best value of n we need to calculate the average
delay at different overhead values (can be calculated using the
description given in previous subsection) and have to choose
the n which gives the shortest or acceptable average delay.

We calculated the average delay for the overhead values
measured in the previous subsection for different values of n
(i.e., from 1 to 16). We found that the single CPU n-monolithic
and n-microservice case give the shortest average delay at
n = 4. Therefore, in these cases, we should decompose or
scale a network function into 4 instances to get the maximum
performance. In case of the dedicated CPU n-monolithic and
n-microservice case, we found the shortest average delay at
n = 16. In fact, when n = 4, n = §, and n = 16, the average
delay is quiet close to each other.

In the next subsection, we will compare above best values of
n with the best values obtained through experimental results.

B. Experimental Results

In this subsection, we report experimental results obtained
through the emulations performed using the experiment sce-
nario, described in section III. We emulated all the four cases
we described before and depict the average delay and CPU
utilization results.

The average delay is calculated as the mean value of the
the time difference when a packet is received by the receiver

and the packet is sent by the sender. The CPU utilization
is calculated at the middle node where all the monoliths or
microservices are deployed.
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Fig. 6. Average delay experimental results

1) Average Delay Experimental Results: Fig. 6 shows the
average delay in all the four cases. The results show that in
the single CPU n-monolithic and n-microservice cases, there
is low values of the average delay (shown by the single CPU
best values in Fig. 6) when the SNORT NF is scaled or
decomposed to 2 or 4 instances (i.e., at n=2 or 4). In addition,
in the dedicated cases, there is low values of the average delay
when the SNORT NF is scaled or decomposed to 2, 4, 8 and
16 instances (i.e., at n=2, 4, 8 and 16).

The above results are in line with mathematical results
(see the previous subsection). The difference is only that the
experimental results also show the best value of the average
delay at n=2.

Note that in our experiments, the best value of n are same
for the monolithic and microservice cases. However, as the
overheads are different for monolithic and microservice cases
for any n value, there may be cases in which the best value
of n are different for monolithic and microservice cases.

The experimental results verify that performance of both
scaled and microservice version of the SNORT NF in the
dedicated CPU case is better than that of the single CPU case.
This is obvious because additional CPUs are allocated in case
of the dedicated CPU cases. We also see in Fig. 6 that the
average delay in the dedicated CPU case for scaled monoliths
is less than that of the delay observed in the decomposed
microservices case for all values of n (i.e., from 2 to 16).
This is because observed overheads (i.e., traffic distribution
overheads) in case of scaled monoliths in the dedicated case
are lesser than the microservice overheads in the dedicated
case.

2) CPU Utilization: We argue that, for Virtualized Network
Functions, the utilization of compute resources should be
optimum and could be an important factor in decision making
for decomposition and scaling. In this section we will compare
the average CPU utilization in each case.

From Fig. 7, we can infer that the average CPU utilization
in the single CPU cases increases on increasing the number
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of instances. While scaling monoliths on a single CPU, the
CPU utilization increases almost linearly from 34% to nearly
60% when the number of instances is increased from 1 to
16. On the other hand, the CPU utilization in the single CPU
microservices case is higher than the single CPU monoliths
case due to additional microservice overheads (discussed in
Section 3). The CPU utilization increases up to 90% in the
single CPU microservices case when the number of instances
increases to 16.

In case a dedicated CPU is available for each instance, the
average utilization per CPU tends to decrease from 34% to
nearly 20% in case of the decomposed microservices as well
as scaled monoliths cases. This is because the traffic load
per CPU is decreased by dedicating a separate CPU to each
instance.

C. Comparison between Mathematical and Experimental Re-
sults

100 -
90 A
80 - B Single CPU n-Microservices
70 - O Dedicated CPU n-Monoliths
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50 A
40 4
30 |
20 A

Single CPU n-Monoliths

B Dedicated CPU n-Microservices

Relative Error
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Fig. 8. Relative errors in experimental results. The mean value of the average
delay from experimental results is taken to calculate the difference

Fig. 8 shows the relative error (denoted by RFError) in the
experimental results with respect to the mathematical results.
The relative error is calculated as

|Empdelay - Mathdelay| %1

RError =
Expdelay

00 an

Here, Expgeiay is the mean value of the average delay from
experimental results and M athgeiqy is the average delay from
the mathematical results.

Although the M/M/1 queuing model is rather simple and
gives an approximation for the average delay, Fig. 8 shows
that the relative error in experimental results is between 2%-
48%. We notice that on average, the smaller the number of
instances the smaller is the relative error with values confined
within 25%. Note that finding the best analytic model is out of
the scope of this work as we make use of a simple model just
for gaining preliminary insights into the best configuration.
Finding a more suitable model that generalizes a VNF and
achieves even lower relative errors is left for future work
where one possible way could be by using a queuing net-
work instead of a single-queue single-server system. However,
instead of analyzing the network function through a queuing
network analyzer (QNA), as in [26], we could use more robust
mathematical tools like the robust queuing network analyzer
(RQNA) proposed in [28] which is shown to outperform the
QNA in terms of relative errors for both heavy- and light-tail
traffic distributions.

V. RELATED WORK

There are many CAPex and OPex related advantages for op-
erators to switch from Physical Network Functions to Virtual
Network Functions. However, the major difference between
the two approaches is based on the performance gains and
loss. Most studies [4] [7] show that the choice should be
subjective as in most cases physical devices perform better
than the Virtual Network Functions. To enable the better
migration, scaling and failure recovery of VNFs, there has
been some tools and architectures proposed [8] which advocate
decoupling of states from the network functions to achieve the
aforementioned benefits.

Recently, there has been a surge in technologies like zero-
copy [7], SR-IOV and DPDK [9] which allows VNFs to per-
form better on the commodity hardware with specialized NICs
and dataplane technologies [10]. Also, there has been various
tools and architectures proposed for better VNF placement,
development and chaining to achieve the desired performance
[12]. With these technologies, there is a high scope of im-
provement in performance of the VNFs running as VMs on
the commodity hardware. Microservice architecture has gained
popularity in recent time across all the software domains
as a new and emerging software architecture. Microservice
architecture is thought to be one of the major driver in
enabling cloud-native devops [13], [14]. The existing software
architectures like SOA (Service Oriented Architecture) is
being compared with the microservices architecture to create
a case for the large scale adoption [11]. Efforts are being
made through studies to create an architecture which can be
easily adopted by the industry [15] [11]. The introduction
of containers creates an interesting case for experimenting
the architecture in the networking domain. There has been
platforms like openNetVM [24] developed, which advocates
the use of containers for running VNFs combined with the
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technologies like DPDK. Recent study [25] shows that the
performance of containers can be further improved, which
provide a valid case to experiment with the microservice
architecture for the VNF deployment.

Considering all the advancements and research done in
the space of VNF performance, it would be interesting to
weigh the benefits in terms of scaling, failure recovery and
performance of monolith VNFs with that of micro-VNFs. In
this regard, some research has been done to bring in the
features of microservices like flexibility, scalability, failure
recovery etc. in the scope of network functions [17]. The
research in this direction is gaining momentum as it awaits
major challenges in terms of management, decision making
and architecture. On the other hand, with the development
of 5G network and virtualization techniques, the microservice
architecture can fit perfectly into the space and futher it also
allows multiple vendors to come together with the expertise
and work on the common goal of the virtualized network
service development. Currently there are several Management
and Orchestration systems for VNFs based on the standards
defined by ETSI [23] which have been developed to manage
and deploy the VNFs on the cloud infrastructure. With the
inclusion of microservice architecture, there would arise a need
to manage and orchestrate these micro network services which
would be a cumbersome task to integrate such microservices
and to define APIs between them [11].

The architecture proposed in [17] is targeted towards en-
abling microservices in the higher layer network services like
virtual CDNs. Adopting microservices in such applications
are proved to be useful not only in terms of better resource
utilization but also shows improvement in the Quality of
Service [17]. Packet Processing technologies like DPDK [9]
and container technologies like docker [21] and Ixc are a major
technological force behind enabling microservice architectures
and the work done in [17], [18], [19] and [20] are all based
on these technologies. The authors in [26] have proposed a
three-tier queuing network for modelling VNF chains. In [27],
a similar model is used to represent a virtualized Evolved
Packet Core control plane which the authors use to investigate
the performance impact of scaling procedures and propose an
automatic scaling algorithm. The proposed model is validated
through simulation. However, in our case, we have targeted
the single threaded VNF running on one server, hence using
the M/M/1 queuing model, and the model is validated exper-
imentally.

The Quality of Service improvements in Virtualized Net-
work Microservices has been seen with the specific use cases
like TP Multimedia Subsystem (IMS) [20], [17]. Most of the
studies focus on the higher level network functions and the ar-
chitecture of the network microservices. There has been some
work done on creating a framework for the Service Function
Chains of the micro network functions [19]. However, we
could not find a study focusing on the measurements of the
Quality of Service improvements on decomposing a monolith
VNF into microservices. There has been some recent work
on enabling the parallelism in network services for better

resource utilization as well as the QoS improvements [22]
which proves that the microservice model of VNFs could be
useful in meeting strict QoS requirements.

VI. CONCLUSIONS

In this paper we focus on deploying virtual network func-
tions using the monolithic and microservice approaches. We
compared the performance of both the approaches using the
mathematical and experimental results. We also calculated the
number of instances in which a network function could be
scaled or decomposed in both the approaches. Our results
showed that scaling using the monolithic approach can result
into more performance compared to the decomposition using
the microservice approach (due to low overheads in the mono-
lithic approach). In addition, we showed that by dedicating
a CPU for each instance in the monolithic and microservice
approach, we can get more performance. However, this per-
formance gain is at the cost of additional CPUs. Therefore,
we showed that the monolithic and microservice approach
can utilize resources (e.g., CPU) fully by just increasing
the number of instances and thereby, performance can also
increase without investing more on resources (e.g, CPU).
The results also showed the effectiveness of our method to
calculate the number of instances in order to achieve maximum
or required performance. In this paper, microservices are
connected through a tandem network. However, in future work
microservices connected in a mesh network will be considered.
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