
Kubernetes as an Availability Manager for

Microservice Applications

Leila Abdollahi Vayghan

Engineering and Computer

Science

Concordia University

Montreal, Canada

l_abdoll@encs.concordia.ca

Mohamed Aymen Saied

Engineering and Computer

Science

Concordia University

Montreal, Canada

m_saied@encs.concordia.ca

Maria Toeroe

Ericsson Inc.

Montreal, Canada

maria.toeroe@ericsson.com

Ferhat Khendek

Engineering and Computer

Science

Concordia University

Montreal, Canada

ferhat.khendek@concordia.ca

Abstract— The move towards the microservice based

architecture is well underway. In this architectural style, small and

loosely coupled modules are developed, deployed, and scaled

independently to compose cloud-native applications. However, for

carrier-grade service providers to migrate to the microservices

architectural style, availability remains a concern. Kubernetes is

an open source platform that defines a set of building blocks which

collectively provide mechanisms for deploying, maintaining,

scaling, and healing containerized microservices. Thus,

Kubernetes hides the complexity of microservice orchestration

while managing their availability. In a preliminary work we

evaluated Kubernetes, using its default configuration, from the

availability perspective in a private cloud settings. In this paper,

we investigate more architectures and conduct more experiments

to evaluate the availability that Kubernetes delivers for its

managed microservices. We present different architectures for

public and private clouds. We evaluate the availability achievable

through the healing capability of Kubernetes. We investigate the

impact of adding redundancy on the availability of microservice

based applications. We conduct experiments under the default

configuration of Kubernetes as well as under its most responsive

one. We also perform a comparative evaluation with the

Availability Management Framework (AMF), which is a proven

solution as a middleware service for managing high-availability.

The results of our investigations show that in certain cases, the

service outage for applications managed with Kubernetes is

significantly high.

Keywords— Microservices; Containers; Orchestration; Docker;

Kubernetes; Failure; Availability

I. INTRODUCTION

During the past decade, the computing community has
witnessed a migration towards the cloud [1]. In this context, the
microservices architectural style [2] has drawn a substantial
attention in the industry. As opposed to the monolithic
architectural style, the microservices architectural style tackles
the challenges of building cloud-native applications by
leveraging the benefits of the cloud [3]. Although this
architectural style is poised to revolutionize the IT industry, it
has so far received a limited attention from academia and
research communities.

Microservices [4] are a realization of the service-oriented
architectural style for developing software composed of small

services that can be deployed and scaled independently by fully
automated deployment machinery, with minimum centralized
management [2]. Microservices are built around separate
business functionalities. Each microservice runs in its own
process and communicates through lightweight mechanisms,
often using APIs [3]. Microservices address the drawbacks of
monolithic applications. They are small and can restart faster at
the time of upgrade or failure recovery. Microservices are
loosely coupled, and failure of one microservice will not affect
other microservices of the system. The fine granularity of this
architectural style makes the scaling more flexible and more
efficient as each microservice can evolve at its own pace.

To leverage all these benefits, one needs to use technologies
aligned with the characteristics of this architectural style.
Containerization is the technology that enables virtualization at
the operating system level [5]. Containers are lightweight and
portable. Therefore, they are suitable for creating microservices.
Docker [6] is the leading container platform that packages code
and dependencies together and ships them as a container image.
Since containers are isolated, they are not aware of each other.
Thus, there is a need for an orchestration platform to manage the
deployment of containers. Kubernetes [7] is an open-source
platform that enables the automated deployment, scaling, and
management for containerized applications. Kubernetes relieves
application developers from the complexity of implementing
their application’s resiliency. Therefore, it has become a popular
platform for deploying microservice based applications.

The move towards the microservice based architectures is
well underway. However, as an important quality attribute for
carrier grade service for instance, the availability remains a
concern. Availability is a non-functional characteristics defined
as the amount of service outage over a period of time [8]. High
availability is achieved when the system is available at least
99.999% of the time. Therefore, the total downtime allowed in
one year for highly available systems is around 5 minutes [9].
Some characteristics of microservices and containers such as
being small and lightweight would naturally contribute to
improve the availability [10]. Kubernetes provides healing for
its managed microservice based applications [7]. The healing
capability of Kubernetes consists of restarting the failed
containers and replacing or rescheduling containers when their
hosts fail. The healing capability is also responsible of

advertising about the unhealthy containers until they are ready
again. These features would also naturally improve the
availability of the services provided by the applications
deployed with Kubernetes. The question is what is the
availability rendered by these applications?

In this paper, we are interested in evaluating microservice
based applications from the availability perspective, since our
ultimate goal is to enable high availability for microservices. As
a follow up to [11] for an initial setup in a private cloud and the
default Kubernetes configuration for healing, we have
investigated other architectures, configurations, and conducted a
series of experiments with Kubernetes and measured the outage
times for different failure scenarios. The goal was to answer the
following research questions (RQ):

• RQ1: What is the level of availability that
Kubernetes can support for its managed
microservices solely through its healing features?

• RQ2: What is the impact of adding redundancy on
the availability achievable with Kubernetes?

• RQ3: What is the availability achievable with
Kubernetes under its most responsive
configuration?

• RQ4: How does the availability achievable with
Kubernetes compare to existing solutions?

We conducted our experiments under the default
configuration of Kubernetes as well as its most responsive one.
To better position and characterize the obtained results we opted
for a comparison with an existing solution for availability
management, the Availability Management Framework (AMF)
[12], a proven middleware service for high availability (HA)
management.

The rest of the paper is organized as follows. Section II
introduces the Kubernetes’ architecture components and the
different architectural solutions for deploying microservice
based applications with Kubernetes. In Section III we present
our experiments’ settings, the failure scenarios and the
availability metrics. The experiments, the results and the
analysis with respect to the research questions are presented in
Section IV. We discuss the lessons learned and the threats to
validity in Section V. In Section VI, we review the related work
on microservice based applications deployed with Kubernetes
from the availability perspective. We conclude in Section VII.

II. ARCHITECTURES FOR DEPLOYING MICROSERVICE

BASED APPLICATIONS WITH KUBERNETES

A. Kubernetes Architectural Components

Kubernetes is a platform for automating the deployment and
scaling of containerized applications across a cluster [7]. The
Kubernetes cluster has a master-slave architecture. The nodes in
a Kubernetes cluster can be either virtual or physical machines.
The master node hosts a collection of processes to maintain the
desired state of the cluster. The slave nodes, that we will refer to
them simply as nodes, have the necessary processes to run the
containers and be managed by the master [7]. The most
important process running on every node is called Kubelet [7].
Kubelet runs the containers assigned to its node via Docker,

periodically performs health checks on them, and reports to the
master their statuses as well as the status of the node.

The smallest and simplest unit that Kubernetes deploys and
manages is called a pod [7]. A pod is a collection of one or more
containers and provides shared storage and network for its
containers. Containers in a pod share its IP address and port
space. A pod also has the specifications of how to run its
containers. Customized labels can be assigned to pods to group
and query them in the cluster. All this information is described
in the pod template. In practice, microservices are containerized
and deployed on a Kubernetes cluster as pods.

The pods in a Kubernetes cluster are deployed and managed
by controllers [7]. A controller specification consists of the pod
template, the desired number of replicas of that pod the
controller should maintain at all times, and other information
such as upgrade strategy and pods’ labels. Once the controller is
deployed to the cluster, it creates the desired number of pods
based on the provided template and continuously maintains their
number equal to the desired number. For example, when a pod
fails due to a node failure, the corresponding controller will
automatically create a new one on another node.

There are different types of controllers in Kubernetes and
each of them is suitable for a specific purpose. For example,
DaemonSet controllers run a copy of a pod on all nodes, Job
controllers create a number of pods and make sure they
successfully terminate, and StatefulSet controllers are used to
manage stateful applications. In this paper, we focus on the
deployment controller used for deploying stateless applications.

As mentioned before, a pod has its own IP address, and this
IP address may change often as the pod is deleted and revived
dynamically by its controller. This frequent change of IP
addresses makes it impossible to keep track of the pods and
communicate with them through their IP addresses. Kubernetes
provides an abstraction called service [7], which defines a
logical set of pods as its endpoints and a policy by which to
access them. A service groups pods based on their labels and not
based on their IP addresses, and so it hides the changes of IP
addresses of pods from the client. A service has an intercluster
virtual IP address that redirects to its endpoints either randomly
or in a round robin manner.

Besides Kubelet, the other important process running on all
nodes is called Kube-Proxy [7]. Kube-Proxy watches the master
for information about the services created in the cluster and their
endpoints. It updates the iptables of the node and adds rules to
forward the requests for a service to its endpoints. When a
service or its endpoint is removed, Kube-Proxy updates the
iptables of the node accordingly.

Kubernetes’ services can be of different types. The default
type is called “Cluster IP”. Services of this type are accessible
only from within the cluster. The “Node Port” type of service is
built on top of a Cluster IP service and exposes the service on
the same port of each node of the cluster. Lastly, a “Load
Balancer” type of service is exposed externally only when the
cluster is running in a public cloud.

Kubernetes provides another way, called ingress, to access
services from outside of the cluster [7]. An ingress is a collection
of rules for inbound connections to reach certain services in the

cluster that are defined as backends for the ingress. For an
ingress to work, an ingress controller needs to run on the cluster.
Ingress controllers are not part of Kubernetes. To have an ingress
controller, one should either implement it or use one that is
available, e.g. Nginx [13] or HAProxy [14].

Kubernetes hides all this complexity behind its API.
Therefore, Kubernetes' users do not need to implement the
required mechanisms to manage their applications’ resilience.
Kubernetes' users only have to interact with the API to specify
the desired deployment architecture and Kubernetes will be in
charge of orchestration and availability management of the
application. However, users with advanced requirements such as
high availability may need to dive into Kubernetes details, since
the Kubernetes architectural components can be used in different
ways to deploy applications in a Kubernetes cluster. For
example, an application can be deployed without using services
at all. In this case, a mechanism should be implemented to
guarantee that each pod advertises its IP address to the rest of the
pods. Moreover, Kubernetes can run in a cluster in a public or a
private cloud. The architecture and the efforts needed to deploy
an application in each of these platforms is different. In this
paper, we discuss architectures for application deployment in
both public and private clouds. These architectures are based on
our understanding of Kubernetes architectural components
described in [7].

B. Deploying Containerized Applications in a Kubernetes

Cluster Running in a Public Cloud

In this section, we consider a Kubernetes cluster composed
of VMs running in a public cloud. Kubernetes runs on all VMs
and creates a unified view of the cluster. One of the VMs is
selected as the master and it is in charge of managing the nodes.
As we are concerned with High Availability, we should consider
an HA cluster composed of more than one master. However,
such setting is still experimental and non-mature for Kubernetes.
Thus, we decided to go with only one master and keep failure
from the master side out of the scope of this paper. For
simplicity, the application here is composed of only one
microservice. The pod template for the containerized
microservice as well as its desired number of replicas are
included in a deployment controller specification which is
deployed to the cluster. We will discuss two ways to expose
services in Kubernetes clusters running in a public cloud.

1) Service of Type Load Balancer: An architecture for

deploying applications in a Kubernetes cluster using a service of

type Load Balancer in a public cloud is shown in Fig. 1. In

addition to a cluster IP, services of type Load Balancer have an

external IP address that is automatically set to the cloud

provider’s load balancer IP address. Using this external IP

address, which is public, it is possible to access the pods from

outside of the cluster.

2) Ingress: There could be more than one service that need

to be exposed externally and with the previous method, one load

balancer is needed for each service. On the other hand,

Kubernetes’ ingress resource can have multiple services as

backends and minimize the number of load balancers [7]. In a

Kubernetes cluster running in a public cloud, an ingress

controller is deployed and exposed by a service of type Load

Balancer [7]. Therefore, requests for all services that are sent to

the cloud provider’s load balancer are received by the ingress

controller and redirected to the appropriate service based on the

rules defined in the ingress resource.

C. Deploying Containerized Applications in a Kubernetes

Cluster Running in a Private Cloud

As it was previously mentioned, Kubernetes is designed to
run on different types of platforms. However, it is important to
understand that deploying applications to a Kubernetes cluster
running in a private cloud requires more effort than it does for a
public cloud. The main difference is in the way of exposing the
application externally. Below, we will discuss two ways of
exposing applications deployed in a Kubernetes cluster running
in a private cloud.

1) External Load Balancer: Fig. 2 depicts the architecture

for exposing the service using an external load balancer.

Services of type Node Port expose the service on the same port

on every node in the cluster. Since it is not a good practice to

expect the users to connect to the nodes directly, an external load

Fig. 1. Architecture for deploying applications to Kubernetes clusters

running in a public cloud.

VM

container engine

OS

VM

container engine

OS

Public Cloud

Kubernetes

pod
pod

deployment
controller

service
type: Load Balancer

sends
requests to

maintains

…

Load
Balancer

Fig. 2. Private cloud - exposing services via external load balancers.

VM

container engine
OS

VM

container engine
OS

Private Cloud

Kubernetes

pod
pod

deployment
controller

service
type: Node Port

sends
requests to

maintains

…

portport
Load

Balancer

balancer is used, which distributes the requests between the

nodes and delivers them to the port on which the Node Port

service is exposed. The downside of this architecture is that for

each service in the cluster that needs to be exposed externally,

we will need one external load balancer.

2) Ingress: Using Kubernetes’ ingress resource is a more

structured way to expose services. In this case, a service of type

Cluster IP is created to redirect requests to the pods and will be

used as the backend of the ingress resource. Also, an ingress

controller is needed in the cluster in order to redirect the

incoming requests to the ingress resource, which later will be

redirected to the appropriate backend service. The ingress

controller is deployed as one pod using a deployment controller.

We create a service of type Node Port to expose the ingress

controller pod to outside of the cluster. Since it is possible to

define multiple services as backends for the ingress resource,

this method is more practical than the previous case in which we

needed to use a load balancer for each individual service that

needs to be exposed. Adapting the ingress controller to a

Kubernetes cluster running in a private cloud is not an easy task

and there is no sufficient documentation on how to use ingress

controllers in these types of clusters. Fig. 3 shows a generic

architecture with ingress exposing the service in a cluster

running in a private cloud to the outside world.
Although the role of each Kubernetes architectural

component is described in [15], understanding how to put them
together is not intuitive. It is a time-consuming effort and
requires lots of trials and errors to figure out the ways these
components work together in practice. The aforementioned
architectures are a result of our understanding of these
components’ roles and several weeks of trials.

Even though Kubernetes can run in both private and public
clouds, one may notice that it is better tailored for public clouds
than it is for private ones. For a Kubernetes cluster running in a
public cloud, the application is automatically exposed to the
outside world through a service of type Load Balancer because
it can use the cloud provider’s load balancer. Also, using the
ingress resource for redirecting requests to multiple services is
less challenging. On the other hand, in a private cloud, exposing
the application to the outside world is challenging and requires
more efforts. One needs to either tackle the complexity of
adapting an ingress controller to expose services or use an
external load balancer for each service that needs to be exposed
which will not be practical for large and complex microservice
based applications composed of many microservices.

III. SETTINGS, FAILURE SCENARIOS AND METRICS

In this section, we describe the settings for the experiments,
the failure scenarios we considered as well as the availability
metrics. We set a Kubernetes cluster in a private cloud (Fig. 3).
This cluster is composed of three VMs running on OpenStack
cloud. Ubuntu 16.04 is the OS running on all VMs. Kubernetes
1.8.2 runs on all VMs and the container engine is Docker 17.09.
Network Time Protocol (NTP) [16] is used for time
synchronization between the nodes. The application deployed is
VideoLan Client (VLC) [17]. There is one container image in
the pod template, on which VLC is installed. Once a pod is

deployed, an application container will be created based on this
image and will start streaming from a file.

Kubernetes offers three levels of health check and repair
action for managing the availability of the deployed
microservices. First, at the application level, Kubernetes ensures
that the software components executing inside a container are
healthy either through process health check or predefined
probes. In both cases, if the Kubelet discovers a failure, the
container is restarted. Second, at the pod level, Kubernetes
monitors the pod failures and reacts according to the defined
restart policy. Finally, at the node level, Kubernetes monitors the
nodes of the cluster through its distributed daemons for node
failure detection. If the node hosting a pod fails, the pod is
rescheduled into another healthy node. With respect to these
levels of health check, we defined three sets of failure scenarios.
In the first set, the application failure is caused by the VLC
container process failure. In the second set, it is due to pod
container process failure, and in the third set it is caused by the
node failure. For each set, we experimented with different
redundancy models [18] and with both default and most
responsive configuration of Kubernetes. Each scenario has been
repeated 10 times and the average of the measurements are
shown in Table I through Table V. All the measurements
reported in this paper are in seconds.

The metrics we use to evaluate Kubernetes from availability
perspective are defined below. In Fig. 4 we summarize the
relations between these metrics.

Fig. 4. Availability metrics.

Fig. 3. Private cloud - exposing services via ingress.

container engine
OS

VM
port

container engine
OS

VM
port

Private Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

…

deployment
controller 1

service
type: Node Port

ingress

pod
pod

ingress
controller

pod
maintains

maintains

sends requests to

sends requests to

reaction time recovery time

repair time

outage time

first reaction
of Kubernetes

failed unit
is repaired

service is
available again

failure

time

Reaction Time: The time between the failure event we
introduce and the first reaction of Kubernetes that reflects the
failure event was detected.

Repair Time: The time between the first reaction of
Kubernetes and the repair of the failed pod.

Recovery Time: The time between the first reaction of
Kubernetes and when the service is available again.

Outage Time: The duration in which the service was not
available. It represents the sum of the reaction time and the
recovery time as shown in Fig. 4.

IV. EXPERIMENTS, RESULTS AND ANALYSIS

In this section, we present the architectures, the experiments,
the results and the analysis for answering the research question
we posed in the introduction.

A. Evaluating the Repair Actions with Default Configuration

of Kubernetes for Supporting Availability (RQ1)

Fig. 5 shows the architecture for these experiments. The
redundancy model in this case is No-Redundancy [18] and
therefore, the number of pods in the deployment controller
specification is only one.

1) Experiments

We evaluate the availability metrics for each of the failure
scenarios under the default configuration of Kubernetes.

Service Outage due to VLC Container Process Failure:
In this scenario, the failure is simulated by killing the VLC
container process from the OS. When the VLC container
crashes, the Kubelet detects the crash and brings the pod to a
state where it will not receive new requests. At this time, that is
the reaction time, the pod is removed from the endpoints list.
Later, the Kubelet restarts the VLC container and the video will
start from the beginning of the file. This time marks the repair
time. Recovery time is when the pod is in the endpoints list again
and is ready to receive requests.

Service Outage due to Pod Container Process Failure:
When a pod is deployed, along with the application containers
specified in its template, one extra container is created which is
the pod container. Since the pod container is a process in the OS,
it is possible that it crashes. In this scenario, the failure is
simulated by killing the pod container process from the OS.
When the pod container process is killed, the Kubelet detects
that the pod container is no longer present and this marks the
reaction time. When the new pod is created and its VLC
container is started, the video will start streaming from the
beginning of the file and we consider the pod as repaired. After,
the Kubelet will add the new pod to the endpoints list and it will
be ready to receive new requests, this marks the recovery time.

Service Outage due to Node Failure: In this scenario, a
node failure is simulated by the Linux’s reboot command on a
VM hosting the pod. As mentioned before, the Kubelet is
responsible to report the status of the node to the master, and it
is the node controller of the master who detects the failure of the
node. When a node hosting a pod fails, it stops sending status
updates to the master and the master will mark the node as not
ready after the fourth missed status update. This time is the
reaction time. When the node is marked as not ready, the VLC
pod on the node is scheduled for termination and after it is
completely terminated a new one will be created. The repair time
is when the new VLC pod is started and streaming the video.
Recovery time is when the pod is added to the endpoints list of
the service.

2) Results and Analysis

The measurements and events of this set of experiments are
shown in Table I and Fig. 6, respectively. In Fig. 6, the failure
of the VLC container, the pod container or the node hosting
Pod1 is shown as the first event. Before this event, the IP
address of Pod1 was in the endpoints list and the service was
available. After the failure, the service becomes unavailable.
However, since Kubernetes has not detected the failure yet, the
IP address of Pod1 stays in the endpoints list. It is removed from
the endpoints list at the reaction time.

In this architecture, removing the IP of Pod1 from the
endpoints list as a reaction of Kubelet to the VLC container
failure takes 0.716 seconds, and in the case of pod container
failure it takes 0.496 seconds. However, in the case of node

Fig. 5. Concrete architecture for deploying applications with

Kubernetes - No-Redundancy redundancy model.

Node 2

Docker
Ubuntu

port
Node 1

Docker
Ubuntu

port
Master

Docker
Ubuntu

port
OpenStack Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

deployment
controller 1

service
type: Node Port

ingress

VLC pod

ingress
controller

pod

TABLE I. EXPERIMENTS WITH KUBERNETES - NO-REDUNDANCY

REDUNDANCY MODEL AND DEFAULT CONFIGURATION

Failure Trigger
(unit: seconds)

Reaction

time

Repair

time

Recovery

time

Outage

time

VLC Container Failure 0.716 0.472 1.050 1.766

Pod Container Failure 0.496 32.570 31.523 32.019

Node Failure 38.187 262.542 262.665 300.852

Fig. 6. Analysis of experiments with Kubernetes under the default

configuration and No-Redundancy redundancy model – evaluating

the repair actions.

Pod1

{p1} {p1} {} {p1}

failure reaction recovery

Endpoints list:

Service State: available availableunavailable unavailable

repair

unavailable

{}

failure, removing the IP of Pod1 from the endpoints list, as a
reaction from the node controller of the master was measured as
38.187 seconds. The reason is that with the default configuration
of Kubernetes, the master takes at least 30 seconds to detect a
node failure. Because the Kubelet updates the node status every
10 seconds and the master allows for four missed status updates
before marking the node as not ready.

The repair time for all scenarios is when a new pod is created
again and streaming the video starts again. As observed in Table
I, the repair time of the VLC container or the pod container
failure scenarios differ significantly (0.472 seconds for the
former and 32.570 seconds for the latter). The reason is that in
the case of pod container failure, a graceful termination signal is
sent to the VLC container and Docker waits 30 seconds for it to
terminate. The repair process will not start unless the VLC
container is terminated. For the node failure scenario, as shown
in Table I, the repair time is considerably high. The reason is that
with the default configuration of Kubernetes, in the case of node
failure, the master waits around 260 seconds to start a new pod
and recover the service. Because of these high repair times, the
service outages for the pod container and node failure scenarios
are significantly high, 32.019 seconds and 300.52 seconds,
respectively.

B. Evaluating the Impact of Redundancy on the Availability

Support by Kubernetes (RQ2)

To investigate the impact redundancy may have on the
availability support by Kubernetes, we consider the architecture
in Fig. 7 where the number of pod replicas that the deployment
controller maintains is increased to two. In this architecture, we
have a N-Way Active redundancy model [18].

1) Experiements

We evaluate the availability metrics for each of the failure
scenarios under the default configuration of Kubernetes with a
N-Way Active redundancy model. We compare the results to the
previous experiments (Section IV.A).

Service Outage due to the VLC Container Process
Failure: In this scenario, similar to the No-Redundancy
redundancy model, the reaction time is when the Kubelet detects
the VLC container has crashed and removes the pod from the
endpoints list. By just removing the unhealthy Pod1 from
endpoints list, the service is recovered. This is because another
healthy pod is still on the endpoints list and ready to serve the
requests. Therefore, the reaction time for this scenario is the
same as the recovery time. The repair time is when the Kubelet
has restarted the crashed VLC container and the video has
started streaming again.

Service Outage due to Pod Container Process Failure: In
this scenario, same as for the No-Redundancy redundancy
model architecture, the reaction time is when the Kubelet detects

that the pod is no longer there. Similarly to the previous
scenarios, the recovery time is when the unhealthy pod is
removed from the endpoints list. The repair time is when a new
pod is created and its VLC container is started and streaming the
video.

Service Outage due to Node Failure: The reaction time in
this scenario is the same as for the No-Redundancy redundancy
model architecture, i.e. the time the master marks the node as not
ready and schedules the pod for termination. The recovery time
is when the IP of Pod1 is removed from the endpoints list. The
repair time is when Pod1 is terminated and another one is
created.

2) Results and Analysis

The measurements and the events for this set of experiments
are shown in Table II and Fig. 8, respectively. The failure of the
VLC container, the pod container or the node hosting Pod1 is
shown in Fig. 8. Before this event, the IP addresses of Pod1 and
Pod2 were in the endpoints list and the service was available.
After the failure, the service is degraded. The reason is that
Kubernetes has not detected the failure yet and the IP address of
the failed Pod1 is still in the endpoints list. At this point, since
Kubernetes still assumes that Pod1 is healthy, some requests
may be redirected to Pod1. Therefore, we consider the service as
degraded.

For the three failure scenarios, the measured recovery time
is the same and this is when the IP of the failed Pod1 is removed

Fig. 7. Concrete architecture for deploying applications with

Kubernetes – N-Way Active redundancy model.

Node 2

Docker
Ubuntu

port
Node 1

Docker
Ubuntu

port
Master

Docker
Ubuntu

port
OpenStack Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

deployment
controller 1

service
type: Node Port

ingress
ingress

controller
pod

VLC pod 1 VLC pod 2

Fig. 8. Analysis of experiments with Kubernetes under the default

configuration and N-Way Active Redundancy model – evaluating the

impact of redundancy.

Pod2

{p1,p2} {p1,p2} {p2} {p1,p2}

Pod1

Endpoints list:

available available availabledegradedService State:

failure reaction recovery repair

degraded

{p1,p2}

TABLE II. EXPERIMENTS WITH KUBERNETES – N-WAY ACTIVE

REDUNDANCY MODEL AND DEFAULT CONFIGURATION

Failure Trigger
(unit: seconds)

Reaction

time

Repair

time

Recovery

time

Outage

time

VLC Container Failure 0.579 0.499 0 0.579

Pod Container Failure 0.696 30.986 0.034 0.730

Node Failure 38.554 262.178 0.028 38.582

from the endpoints list. However, in the case of the VLC
container failure, this event marks both the first reaction to the
failure as well as the recovery of the service. Therefore, for this
scenario, recovery time is zero. Repair time happens later when
the failed pod is completely terminated and Pod1 is created again
and streaming the video.

As shown in Table II, the measured outage time in the
experiments with a N-Way Active redundancy model is
significantly lower than for the No-Redundancy redundancy
model. For instance, the outage times for the pod container
failure and the node failure scenarios were reduced from 32.019
and 300.852 seconds to 0.730 and 38.582 seconds, respectively.
The reason is that with the N-Way Active redundancy model,
the recovery does not depend on the repair of the faulty unit and
the service is recovered as soon as Kubernetes detects the failure.
The results show that the repair actions and the healing
capability of Kubernetes are not sufficient for supporting
availability and adding redundancy can significantly decrease
the downtime.

C. Evaluating the Repair Actions with Most Responsive

Configuration of Kubernetes for Supporting Availability

(RQ3)

As observed in subsections A and B, the default
configuration of Kubernetes has a significant impact on the
service outage. Our analysis for the different failure scenarios
has led to the identification of the aspects that need to be
modified to reduce the observed outage. One aspect affecting the
service outage is the graceful termination signal sent to the
application container in the scenario of pod container failure. For
the node failure scenarios, the frequency of node status posting
by Kubelet to the master and the number of allowed missed
status updates before marking a node as unhealthy are the main
aspects that affect the service outage.

1) Experiments

We perform two sets of experiments where Kubernetes has
the most responsive configuration. In the first set, for the pod
container failure, the configuration parameter for the graceful
termination of pods is set to zero second. In the second set, for
the node failure, the configuration parameters related to handling
node failure are set to the lowest value possible (one second).
We are aware of the network overhead and potential false node
failure reports for the most responsive configuration. However,
our goal in this experiment is to measure the best achievable
availability when deploying applications with Kubernetes.
These experiments were conducted with both No-Redundancy
and N-Way Active redundancy model architectures (Fig. 5 and
Fig. 7).

Reconfiguring the Graceful Termination Period of Pods:
As it was mentioned, when a pod container process fails, a
graceful termination signal is sent to Docker to terminate the
application container which delays the repair of the pod for 30
seconds. In the No-Redundancy redundancy model, this grace
period affects the recovery time, because a new pod will not be
created unless the failed one completely terminates. To reduce
this grace period, we updated the pod template and set the grace
period to zero. We repeated the experiments for the pod

container failure scenario and evaluated the impact of this
change on service outage.

Reconfiguring Node Failure Handling Parameters: To
have the most responsive Kubernetes configuration, we
reconfigured the Kubelet of each node to post the node’s status
every second to the master. The node controller of the master
was also reconfigured to read the updated statuses every second
and only allow one missed status update for each node. We
repeated the experiments for the node failure scenario in order
to evaluate the impact of this reconfiguration on service outage.

2) Results and Analysis

The results of these experiments are presented in Table III
and Table IV. As it was expected, Table III shows a significant
decrease in repair time which affects the service outage of
experiments done with No-Redundancy redundancy model. The
service outage of experiments with the N-Way Active
redundancy model has not changed, as the repair time does not
play a role in the service outage in this case. We observed that
with the new configuration, when the pod container crashes, the
time Docker gives to the application container before forcefully
killing it is reduced to 2 seconds. Moreover, in Table IV, we
observe significant changes in all measured metrics. With the
new configuration, the master allows only one missed status
update and since each node updates its status every second, the
reaction time is reduced to almost one second. The repair time
also is decreased from 260 seconds to around 2.5 seconds, as the
master will wait only one second before starting a new pod on a
healthy node. The change in the reaction time affects the service
outage in all the experiments. However, the repair time affects
the outage time in the case of the No-Redundancy redundancy
model only.

D. Comparing Kubernetes with Existing Solutions for

Availability Management (RQ4)

To better position the availability results obtained with
Kubernetes, we look into RQ4 (How does the availability
achievable with Kubernetes compare to existing solutions?).
AMF [12] is a standard middleware service for managing the
availability of components based applications. It has been
implemented, with other middleware services, in the OpenSAF
middleware [19], a proven solution for availability management.
In [20] we conducted a set of experiments for different failure
scenarios with the same application, VLC. We considered the
following failure scenarios, VLC process failure, VM failure and
physical host failure, corresponding to VLC container failure,

TABLE III. EXPERIMENTS WITH KUBERNETES WITH CHANGED

CONFIGURATION - SERVICE OUTAGE DUE TO POD CONTAINER FAILURE

Redundancy Model

(unit: seconds)

Reaction

time

Repair

time

Recovery

time

Outage

time

No-Redundancy 0.708 3.039 3.337 4.045

N-Way Active 0.521 3.008 0.032 0.554

TABLE IV. EXPERIMENTS WITH KUBERNETES WITH CHANGED

CONFIGURATION - SERVICE OUTAGE DUE TO NODE FAILURE

Redundancy Model
(unit: seconds)

Reaction

time

Repair

time

Recovery

time

Outage

time

No-Redundancy 0.976 2.791 2.998 3.974

N-Way Active 0.849 2.173 0.022 0.872

pod container failure and node failure, respectively. In the
experiments with OpenSAF we used a No-redundancy
redundancy model with two VLC applications, one active and
the other one as a spare to be instantiated and take over in case
of failure of the active.

The results of the experiments with OpenSAF and the
comparison with Kubernetes are shown in Table V and Fig. 9,
respectively. We observe that in the cases of No-Redundancy
redundancy model, the OpenSAF solution shows a lower outage
time. Moreover, although the N-Way Active redundancy model
should render a higher level of availability compared to the No-
Redundancy redundancy [18], the outage time for the node
failure scenario of Kubernetes with N-Way Active is still
significantly higher than for OpenSAF with the No-Redundancy
redundancy model. The reason for this is the default
configuration of Kubernetes that leads to a late reaction time.

However, with the changed configuration of Kubernetes, the
outage times in Kubernetes experiments with No-Redundancy
architecture are comparable to those of OpenSAF.

V. LESSONS LEARNED AND THREATS TO VALIDITY

A. Lessons Learned

Kubernetes supports automatic deployment and scaling of
microservice based applications. Although Kubernetes can run
on different cloud environments, one has to admit that its
deployment in a private cloud is not as straightforward as in
public clouds. Kubernetes provides availability through its
repair actions. However, these are not sufficient for supporting
highly availability. For example, for the node failure scenario,
the outage time is about 5 minutes, which is equivalent to the
amount of downtime allowed in a one-year period for a highly
available system. Even after adding redundancy, we observed
that the default configuration of Kubernetes still resulted in a
significant service outage in the case of node failure. Although
the default configuration can be changed, Kubernetes is most
commonly used under its default configuration and figuring out
how to reconfigure Kubernetes’ reaction to node failure while
avoiding network overhead and false positive reports can be
complicated and requires a great effort.

B. Threats to Validity

1) Internal Validity: the following internal threats can affect

the validity of our results. First, all experiments were conducted

in a small cluster consisting of only a master and two worker

nodes. Kubernetes may behave differently in larger clusters

which may impact the availability measurements presented in

our experiments. Second, the availability measurements may

also vary depending on the application’s complexity and the

collocated applications managed by Kubernetes. In our

experiments, we considered a simple case of only one

microservice. We understand that these factors may impact the

results of our study. However, we believe that these factors can

only decrease the availability of the application. The mapping

of the metrics to the concrete events is the biggest threat and

requires more investigation as one can map them differently, in

which case all the measurements could be different. However,

we believe that even with a different mapping what would

change is the split between reaction and repair times and reaction

and recovery times, thus, resulting still in the same outage time.

We may observe a decrease in the reaction time which adds to

the recovery time, or inversely but the total outage time would

be the same since it represents the duration in which the service

was not available.

2) External Validity: We only considered the case of a video

streaming application. Before generalizing the results, one has

to consider other types of applications even though the

conducted experiments and the analysis give some indications

about the availability of the applications deployed with

Kurbernetes.

3) Construct Validity: Regarding the extent to which the

observed phenomena correspond to what is intended to be

observed, we see another threat related to the tools and

mechanisms used in our experiments. Indeed, we rely on the

TABLE V. EXPERIMENTS WITH OPENSAF

Failure Trigger
(unit: seconds)

Reaction

time

Repair

time

Recovery

time

Outage

time

VLC Process Failure 0.650 - 0.145 0.795

VM Failure 3.233 - 0.123 3.351

Physical Host Failure 3.229 - 0.118 3.346

Fig. 9. Comparing Kubernetes and OpenSAF from availability

perspective. a) VLC container failure scenario, b) Pod container

failure scenario, c) Node failure scenario.

Default configuration
Most responsive configuration
OpenSAF

0.554

Kubernetes
(N-Way Active)

>

Service Outage
(Seconds)

Kubernetes
(No-Redundancy)

OpenSAF

1

2
3
4

30

3.351
4.045

0.730

32.019

Service Outage
(Seconds)

>
> 38.582

1
2
3
4

35

300

Kubernetes
(No-Redundancy)

Kubernetes
(N-Way Active)

OpenSAF

0.872

3.346
3.974

300.852

Service Outage
(Seconds)

1

2

Kubernetes
(N-Way Active)

OpenSAF

0.579

Kubernetes
(No-Redundancy)

0.795
1.766

a)

b)

c)

timestamps reported in Kubernetes and Docker logs. However,

we used NTP to synchronize the time between the nodes. Other

strategies can be used and may be more meticulous, for instance,

container instrumentation. However, we believe that the

considered logs are precise enough for our needs, and to mitigate

this threat, we cross-checked the timestamp data in the different

logs (i.e. Kubernetes, Docker, and systemd journal). Moreover,

to alleviate any particular result expectancies we used the same

process for the different failure scenarios.

VI. RELATED WORK

The architectural style of microservices has emerged
primarily from the industry [2]. It is being adopted and
investigated from different perspectives by practitioners and to
a smaller extent by researchers in academia as well. In this
section, we review related work focusing to the availability of
microservice based architecture.

Dragoni et al. in their work [3] propose the definition of a
microservice as a small and independent process that interacts
by messaging. They define the microservice based architecture
as a distributed application composed of microservices and
discuss the impact of microservices on the quality attributes of
the application. Along with performance and maintainability,
they specifically discuss availability as a quality attribute which
is impacted by the microservice based architecture. Emam et al.
in [21] found that as the size of a service increases, it becomes
more fault-prone. Since microservices are small in size, in
theory, they are less fault-prone. However, Dragoni et al. argue
that at integration, the system will become more fault-prone
because of the complexity of launching an increasing number of
microservices.

Khazaei et al. in [22] propose a microservice platform for the
cloud by using a Docker technology that provisions containers
based on the requests of microservice users. One of the key
differences between this platform and Kubernetes is that this
platform has the ability to ask for more VMs from the
infrastructure when needed while Kubernetes does not. Kang et
al. in [23] propose a microservice based architecture and use
containers to operate and manage the cloud infrastructure
services. In their architecture, each container is monitored by a
sidekick container and in case of failure, recovery actions are
taken. They performed some experiments and concluded that
recovering from container failure is faster than recovering from
VM failure.

Netto et al. in [24] believe that Kubernetes improves the
availability of stateless applications but faces problems when it
comes to stateful applications. They integrated a coordination
service with Kubernetes to offer automatic state replication. In
their architecture, all replicas of a pod execute the incoming
requests while only one, which has received the request from the
client, will respond. This way, the state is replicated. They
evaluated some metrics such as latency and they concluded that
the latency increases with the number of pod replicas.

In our study, we performed a quantitative evaluation and
analysis of availability for microservice based applications
deployed with Kubernetes. We considered several failure
scenarios, configurations and redundancy models. We compared

the results with Kubernetes to similar settings with OpenSAF to
position Kubernetes from the availability perspective.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented and compared architectures for
deploying microservice based applications in Kubernetes
clusters hosted in public and private clouds. Through our
investigations, we learned that although it is not stated in
Kubernetes’ documentation [15], Kubernetes is more tailored
for public clouds than for private clouds. We conducted
experiments in a private cloud environment, considering
different failure scenarios, configurations, redundancy models,
to evaluate Kubernetes from the perspective of the availability
of the applications running on Kubernetes. We analyzed the
results of our experiments and found that the repair actions of
Kubernetes are not sufficient for providing availability,
especially high availability. For instance, the default
configuration of Kubernetes results in a significant outage in the
case of node failure. Kubernetes can be reconfigured to avoid
this significant outage and under its most responsive
configuration, outage times in Kubernetes experiments are
comparable to those of OpenSAF, a proven solution for
availability management. We also observed that adding
redundancy can significantly decrease the downtime since the
service is recovered as soon as Kubernetes detects the failure and
it does not depend on the repair of the faulty unit. In our future
works, we will investigate architectures for deploying stateful
microservice based applications with Kubernetes. More
investigations are also required to find out the impact of
reconfiguring Kubernetes on network overhead and false
positive node failure reports. We will also consider, the case of
multiple masters and failure from the master side, as well as
Kubernetes behavior in case of network partitioning.

ACKNOWLEDGMENT

This work has been partially supported by Natural Sciences
and Engineering Research Council of Canada (NSERC) and
Ericsson.

References
[1] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices

architecture by using Docker technology,” in SoutheastCon 2016, 2016,
pp. 1–5.

[2] “Microservices,” martinfowler.com. [Online]. Available:
https://martinfowler.com/articles/microservices.html. [Accessed: 01-Oct-
2018].

[3] N. Dragoni et al., “Microservices: Yesterday, Today, and Tomorrow,” in
Present and Ulterior Software Engineering, M. Mazzara and B. Meyer,
Eds. Cham: Springer International Publishing, 2017, pp. 195–216.

[4] S. Newman, Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc., 2015.

[5] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder,
“Performance Evaluation of Microservices Architectures Using
Containers,” in 2015 IEEE 14th International Symposium on Network
Computing and Applications, 2015, pp. 27–34.

[6] “Docker - Build, Ship, and Run Any App, Anywhere.” [Online].
Available: https://www.docker.com/. [Accessed: 01-Oct-2018].

[7] “Kubernetes,” Kubernetes. [Online]. Available: https://kubernetes.io/.
[Accessed: 24-Jan-2018].

[8] M. Toeroe and F. Tam, Service Availability: Principles and Practice.
John Wiley & Sons, 2012.

[9] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud: State of
the art,” Journal of Network and Computer Applications, vol. 60, pp. 54–
67, Jan. 2016.

[10] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.
Safina, “Microservices: How To Make Your Application Scale,” in
Perspectives of System Informatics, 2018, pp. 95–104.

[11] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying
Microservice Based Applications with Kubernetes: Experiments and
Lessons Learned,” in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), 2018, pp. 970–973.

[12] “SAI-AIS-AMF-B.04.01.AL.pdf.” .

[13] NGINX Ingress Controller for Kubernetes. Contribute to
kubernetes/ingress-nginx development by creating an account on GitHub.
Kubernetes, 2018.

[14] Andjelko Iharos, “HAProxy Ingress Controller for Kubernetes,” HAProxy
Technologies, 12-Dec-2017. .

[15] “Kubernetes Documentation,” Kubernetes. [Online]. Available:
https://kubernetes.io/docs/home/. [Accessed: 23-Jan-2018].

[16] “ntp.org: Home of the Network Time Protocol.” [Online]. Available:
http://www.ntp.org/. [Accessed: 12-Oct-2018].

[17] “VLC: Official site - Free multimedia solutions for all OS! - VideoLAN.”
[Online]. Available: https://www.videolan.org/index.html. [Accessed:
12-Oct-2018].

[18] A. Kanso, M. Toeroe, and F. Khendek, “Comparing redundancy models
for high availability middleware,” Computing, vol. 96, no. 10, pp. 975–
993, Oct. 2014.

[19] “OpenSAF Foundation - Welcome to OpenSAF.” [Online]. Available:
http://opensaf.org/. [Accessed: 12-Oct-2018].

[20] “Integrating Open SAF High Availability Solution with Open Stack -
IEEE Conference Publication.” [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7196529. [Accessed: 12-
Oct-2018].

[21] K. E. Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N. Rai,
“The optimal class size for object-oriented software,” IEEE Transactions
on Software Engineering, vol. 28, no. 5, pp. 494–509, May 2002.

[22] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efficiency
Analysis of Provisioning Microservices,” in 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2016, pp. 261–268.

[23] “Container and Microservice Driven Design for Cloud Infrastructure
DevOps - IEEE Conference Publication.” [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7484185. [Accessed: 12-
Oct-2018].

[24] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. Sá de Souza,
“State machine replication in containers managed by Kubernetes,”
Journal of Systems Architecture, vol. 73, pp. 53–59, Feb. 2017.

