
1 

Figure 1: Inflexible Legacy Infrastructure 

Software-Defined Networking: State of the Art and Research Challenges 
Manar Jammala1, Taranpreet Singha, Abdallah Shamia, RasoolAsalb, and Yiming Lic 

a Department of Electrical and Computer Engineering, Western University, Canada 
b British Telecom, UK 

c StarTech.com, Canada  

Abstract—Plug-and-play information technology (IT) 
infrastructure has been expanding very rapidly in recent years. 
With the advent of cloud computing, many ecosystem and 
business paradigms are encountering potential changes and may 
be able to eliminate their IT infrastructure maintenance 
processes. Real-time performance and high availability 
requirements have induced telecom networks to adopt the new 
concepts of the cloud model: software-defined networking (SDN) 
and network function virtualization (NFV). NFV introduces and 
deploys new network functions in an open and standardized IT 
environment, while SDN aims to transform the way networks 
function. SDN and NFV are complementary technologies; they do 
not depend on each other. However, both concepts can be merged 
and have the potential to mitigate the challenges of legacy 
networks. In this paper, our aim is to describe the benefits of 
using SDN in a multitude of environments such as in data 
centers, data center networks, and Network as Service offerings. 
We also present the various challenges facing SDN, from 
scalability to reliability and security concerns, and discuss 
existing solutions to these challenges.  

Keywords—Software-Defined Networking, OpenFlow, Datacenters, 
Network as a Service, Network Function Virtualization. 

1. INTRODUCTION

Today’s Internet applications require the underlying networks 
to be fast, carry large amounts of traffic, and to deploy a 
number of distinct, dynamic applications and services. 
Adoption of the concepts of “inter-connected data centers” 
and “server virtualization” has increased network demand 
tremendously. In addition to various proprietary network 
hardware, distributed protocols, and software components, 
legacy networks are inundated with switching devices that 
decide on the route taken by each packet individually; 
moreover, the data paths and the decision-making processes 
for switching or routing are collocated on the same device. 
This situation is elucidated in Fig. 1. The decision-making 
capability or network intelligence is distributed across the 
various network hardware components. This makes the 
introduction of any new network device or service a tedious 
job because it requires reconfiguration of each of the 
numerous network nodes.  
Legacy networks have become difficult to automate [1, 
2].Networks today depend on IP addresses to identify and 
locate servers and applications. This approach works fine for 
static networks where each physical device is recognizable by 
an IP address, but is extremely laborious for large virtual 
networks. Managing such complex environments using 
traditional networks is time-consuming and expensive, 
especially in the case of virtual machine (VM) migration and 
network configuration. To simplify the task of managing large 

virtualized networks, administrators must resolve the physical 
infrastructure concerns that increase management complexity. 
In addition, most modern-day vendors use control-plane 
software to optimize data flow to achieve high performance 
and competitive advantage [2]. This switch-based control-
plane paradigm gives network administrators very little 
opportunity to increase data-flow efficiency across the 
network as a whole. The rigid structure of legacy networks 
prohibits programmability to meet the variety of client 
requirements, sometimes forcing vendors into deploying 
complex and fragile programmable management systems. In 
addition, vast teams of network administrators are employed 
to make thousands of changes manually to network 
components [2, 3].  

The demand for services and network usage is growing 
rapidly. Although growth drivers such as video traffic, big 
data, and mobile usage augment revenues, they pose 
significant challenges for network operators [4]. Mobile and 
Telco operators are encountering spectrum congestion, the 
shift to internet protocol (IP), and increased mobile users. 
Concurrently, data-center operators are facing tremendous 
growth in the number of servers and virtual machines, 
increasing server-to-server communication traffic. In order to 
tackle these challenges, operators require a network that is 
efficient, flexible, agile, and scalable.  

Submitted for review and possible publication in Elsevier’s Journal of Computer Networks



2 
 

Inspired by the words of Marc Andreesen, “software is eating 
the world”, software-defined networking (SDN) and 
virtualization are poised to be the solutions that overcome the 
challenges described above. SDN operates on an aggregated 
and centralized control plane that might be a promising 
solution for network management and control problems. The 
main idea behind SDN is to separate the forwarding/data plane 
from the control plane while providing programmability on 
the control plane, as illustrated in Fig.2.  

 
Despite its obvious advantages and its ability to simplify 
networks, SDN encounters some technical challenges that can 
restrict its functionality and performance in cloud computing, 
information technology (IT) organizations, and networking 
enterprises. Compared to recent surveys [5, 6], this paper 
tackles most of the SDN challenges with their causes and 
existing solutions in a comprehensive and detailed manner. It 
addresses reliability, scalability, latency, controller placement, 
recent hardware shortages, and security issues. Overcoming 
these challenges might assist IT organizations and network 
enterprises in exploring and improving the various 
opportunities and functionalities of SDN. 
 
In this paper, Section II defines SDN and discusses its 
architecture and its protocol, OpenFlow. The concept of 
network virtualization (NV) is elucidated in Section III, with a 
discussion of how NV has emerged as a potential solution to 
the current ossified network architecture and offers benefits 
that can rapidly alter both the networking and cloud-

computing industries. Section IV discusses various SDN 
applications in data-center networks and Network as a Service. 
Section V analyzes the various challenges facing SDN, their 
causes, and their recent solutions. Finally, the last section 
summarizes various research initiatives in the SDN field, 
starting from SDN prototypes, development tools and 
languages, and virtualization implementations using SDN and 
ending with the various SDN vendors.  

 

2. SOFTWARE-DEFINED NETWORKING AND OPENFLOW 

ARCHITECTURE 

Most current network devices have control and data-flow 
functionalities operating on the same device. The only control 
available to a network administrator is from the network 
management plane, which is used to configure each network 
node separately. The static nature of current network devices 
does not permit detailed control-plane configuration. This is 
exactly where software-defined networking comes into the 
picture. The ultimate goal of SDN as defined in [7] is to 
“provide open user-controlled management of the forwarding 
hardware of a network element.” SDN operates on the idea of 
centralizing control-plane intelligence, but keeping the data 
plane separate. Thus, the network hardware devices keep their 
switching fabric (data plane), but hand over their intelligence 
(switching and routing functionalities) to the controller. This 
enables the administrator to configure the network hardware 
directly from the controller. This centralized control of the 
entire network makes the network highly flexible [8, 9]. 

2.1 SDN Architecture 

Compared to legacy networks, there are four additional 
components in SDN [8, 9, and 10]. 
 

1) Control Plane 
The control plane/controller presents an abstract view of the 
complete network infrastructure, enabling the administrator to 
apply custom policies/protocols across the network hardware. 
The network operating system (NOX) controller is the most 
widely deployed controller. 
 

2) Northbound Application Interfaces 
The “northbound" application programming interfaces (APIs) 
represent the software interfaces between the software 
modules of the controller platform and the SDN applications 
running atop the network platform. These APIs expose 
universal network abstraction data models and functionality 
for use by network applications. The “northbound APIs” are 
open source-based. 
 

3) East-West Protocols 
In the case of a multi-controller-based architecture, the East-
West interface protocol manages interactions between the 
various controllers. 
 

4) Data Plane and Southbound Protocols 
The data plane represents the forwarding hardware in the SDN 
network architecture. Because the controller needs to 

Figure 2: SDN Architecture 



3 
 

communicate with the network infrastructure, it requires 
certain protocols to control and manage the interface between 
various pieces of network equipment. The most popular 
“southbound protocol” is the OpenFlow protocol. The 
following section explains OpenFlow and its architecture. 

2.2 SDN Benefits 

SDN provides several benefits to address the challenges facing 
legacy network architectures. 
 
1) Programmability of the Network: By implementing a new 
orchestration level, SDN can tackle the inflexibility and 
complexity of the traditional network. SDN provides 
enterprises with the ability to control their networks 
programmatically and to scale them without affecting 
performance, reliability, or the user experience [4]. The data- 
and control-plane abstractions constitute the immense worth of 
SDN. By eliminating the complexity of the infrastructure layer 

and adding visibility for applications and services, SDN 
simplifies network management and brings virtualization to 
the network. It abstracts flow control from individual devices 
to the network level. Network-wide data-flow control gives 
administrators the power to define network flows that meet 
connectivity requirements and address the specific needs of 
discrete user communities. 
With the SDN approach, network administrators no longer 
need to implement custom policies and protocols on each 
device in the network separately. In the general SDN 
architecture, control-plane functions are separated from 
physical devices and are performed by an external controller 
(e.g., standard server running SDN software). SDN provides 
programmability on the control plane itself, through which 
changes can be implemented and disseminated either to a 
specific device or throughout the network hardware on a 
secure channel. This approach promises to facilitate the 
integration of new devices into the existing architecture. The 
SDN controller improves the traffic engineering capabilities of 
the network operators using video traffic. It enables network 
operators to control their congestion hot spots and reduces the 
complexity of traffic engineering [4]. 
 
2) The Rise of Virtualization: SDN is a promising opportunity 
for managing hyper-scale data centers (DCs). Data centers 
raise significant scalability issues, especially with the growth 
of virtual machines (VMs) and their migration. Moving a VM 
and updating the media access control (MAC) address table 
using traditional network architecture may interrupt the user 
experience and applications.  
Therefore, network virtualization, which can be seen as an 
SDN application, offers a prominent opportunity for hyper-
scale data centers. It provides tunnels that can abstract the 
MAC address from the infrastructure layer, enabling Layer 2 
traffic to run over Layer 3 overlays and simplifying VM 
deployment and migration in the network [4]. 
Furthermore, SDN enables multi-tenant hosting providers to 
link their physical and virtual servers, local and remote 
facilities, and public and private clouds into a single logical 
network. As a result, each customer will have an isolated view 
of the network provider. SDN adds a virtualization layer to the 
fabric architecture of the cloud providers. This enables their 
tenants to obtain various views over the data-center network 
(DCN) according to their demands. 
SDN is a promising approach for offering Networks as a 
Service (NaaS) which will enable flexible service models and 
virtual network operators and endow enterprises with the 
ability to control DCs and their traffic. This paper introduces 
the benefits of NaaS and its consolidation with SDN using 
different cloud models. 
 
3) Device Configuration and Troubleshooting: With SDN, 
device configuration and troubleshooting can be done from a 
single point on the network which pushes us closer to realizing 
the ultimate goal of “a dynamic network” that can be 
configured and made adaptable according to needs. SDN also 
provides the capability to encourage innovation in the 

 
Figure 3: Basic SDN-Based Network Architecture 

 
Figure 4: API Directionality in SDN Architecture 



4 
 

networking field by offering a programmable platform for 
experiments on novel protocols and policies using production 
traffic. Separating data flows from test flows facilitates the 
adoption of newer protocols and ideas into the networking 
domain [2, 3]. 
 
From a broader perspective, SDN offers a form of networking 
in which packet routing control can be separated from 
switching hardware [3]. As a result, when the SDN and 
Ethernet fabrics are consolidated, real network intelligence is 
achieved [4]. 
 
Since OpenFlow is the industrial standard interface for SDN 
between the control and the data layers, the following 
subsection defines it and its architecture. 

 

2.3 Open Flow Definition 

OpenFlow is the protocol used for managing the southbound 
interface of the generalized SDN architecture. It is the first 
standard interface defined to facilitate interaction between the 
control and data planes of the SDN architecture. OpenFlow 
provides software-based access to the flow tables that instruct 
switches and routers how to direct network traffic. Using these 
flow tables, administrators can quickly change network layout 
and traffic flow. In addition, the OpenFlow protocol provides 
a basic set of management tools which can be used to control 
features such as topology changes and packet filtering. The 
OpenFlow specification is controlled and defined by the non-
profit open network foundation (ONF), which is led by a 
board of directors from seven companies that own and operate 
some of the largest networks in the world (Deutsche Telekom, 
Facebook, Google, Microsoft, Verizon, Yahoo, and NTT). 
Most of the networking hardware vendors such as HP, IBM, 
and CISCO offer switches and routers that use the OpenFlow 
protocol [10]. OpenFlow shares much common ground with 
the architectures proposed by ForCES and SoftRouter; 
however, the difference lies in inserting the concept of flows 
and leveraging the existence of flow tables in commercial 
switches [11]. 
 
OpenFlow-compliant switches come in two main types: 
OpenFlow-only and OpenFlow-hybrid. OpenFlow-only 
switches support only OpenFlow operations, i.e., all packets 
are processed by the OpenFlow pipeline. OpenFlow-hybrid 
switches support both OpenFlow operations and normal 
Ethernet switching operations, i.e., traditional L2 and L3 
switching and routing. These hybrid switches support a 
classification mechanism outside of OpenFlow that routes 
traffic to either of the packet-processing pipelines [11]. 
 

2.3.1 OpenFlow Architecture 

Basically, the OpenFlow architecture consists of numerous 
pieces of OpenFlow-enabled switching equipment which are 
managed by one or more OpenFlow controllers, as shown in 
Fig.5. 
 

 
a) Defining a Flow  

Network traffic can be partitioned into flows, where a flow 
could be a transmission control protocol (TCP) connection, 
packets with the same MAC address or IP address, packets 
with the same virtual local area network (VLAN) tag, or 
packets arriving from the same switch port [9]. 
 

b) OpenFlow Switch 
An OpenFlow switch consists of one or more flow tables and a 
group table. It performs packet look-ups and forwarding. The 
controller manages the OpenFlow-enabled switch using the 
OpenFlow protocol over a secure channel. Each flow table in 
the switch is made up of a set of flow entries in which each 
flow entry consists of match header fields, counters, and a set 
of instructions to apply to matching packets [11]. 
 

c) OpenFlow Channel 
The OpenFlow channel is the interface that connects each 
OpenFlow switch to a controller. Using this interface, the 
controller configures and manages the switch. The OpenFlow 
protocol supports three message types, all of which are sent 
over a secure channel. These messages can be categorized as 
controller-to-switch, asynchronous, and symmetric, each 
having multiple sub-types. Controller-to-switch messages are 
initiated by the controller and are used to manage or derive 
information directly about the state of the switch. 
Asynchronous messages are initiated by the switch and are 
used to update the controller with network events and changes 
to the switch state. Symmetric messages are initiated by either 
the switch or the controller and are sent without solicitation. 
The OpenFlow channel is usually encrypted using transport 
layer security (TLS), but can also operate directly over TCP 
[11]. 

 
Figure 5: Basic Architecture of OpenFlow



5 
 

d) OpenFlow Controller 
The controller is responsible for maintaining all the network 
protocols and policies and distributing appropriate instructions 
to the network devices. In other words, the OpenFlow 
controller is responsible for determining how to handle 
packets without valid flow entries. It manages the switch flow 
table by adding and removing flow entries over the secure 
channel using the OpenFlow protocol. The controller 
essentially centralizes network intelligence. The switch must 
be able to establish communication with a controller at a user-
configurable (but otherwise fixed) IP address using a user-
specified port. The switch initiates a standard TLS or TCP 
connection to the controller when it knows its IP address. 
Traffic to and from the OpenFlow channel does not travel 
through the OpenFlow pipeline. Therefore, the switch must 
identify incoming traffic as local before checking it against the 
flow tables. The switch may establish communication with a 
single controller or with multiple controllers.  
Having multiple controllers improves reliability because the 
switch can continue to operate in OpenFlow mode if one 
controller connection fails. The hand-over between controllers 
is entirely managed by the controllers themselves, which 
enables load balancing and fast recovery from failure. The 
controllers coordinate the management of the switch among 
themselves, and the goal of the multiple controller 
functionality is only to help synchronize controller hand-offs 
performed by the controllers.  
The multiple controller functionality addresses only controller 
fail-over and load balancing. When OpenFlow operation is 
initiated, the switch must connect to all controllers with which 
it is configured and try to maintain connectivity with all of 
them concurrently. Many controllers may send controller-to-
switch commands to the switch; the reply or error messages 
related to these commands must be sent only on the controller 
connection associated with that command. Typically, the 
controller runs on a network-attached server [11].  
SDN controllers can be implemented in the following three 
structures [12]: 

i. Centralized structure 
ii. Distributed structure 
iii. Multi-layer structure. 

 

2.3.2  Flow & Group Tables 

Each entry in the flow table has three fields [11]: 
• A packet header is specific to the flow and defines it. This 
header is almost a ten-tuple. Its fields contain information 
such as VLAN ID, source and destination ports, IP address, 
and Ethernet source and destination. 
•The action specifies how the packets in a flow will be 
processed. An action can be any one of the following:  
i) Forward the packet to a given port or ports  
ii) Drop the packet  
iii) Forward the packet to the controller. 
• Statistics include information such as number of packets, 
number of bytes, time since the last packet matched the flow, 
and so on for each type of flow [11]. Most of the time, 

counters are used to keep track of the number of packets and 
bytes for each flow and the elapsed time since flow initiation. 
 

2.3.3 OpenFlow Protocol 

An OpenFlow switch contains multiple flow and group tables. 
Each flow table consists of many flow entries. These entries 
are specific to a particular flow and are used to perform packet 
look-up and forwarding. The flow entries can be manipulated 
as desired through OpenFlow messages exchanged between 
the switch and the controller on a secure channel. By 
maintaining a flow table, the switch can make forwarding 
decisions for incoming packets by a simple look-up on its 
flow-table entries. OpenFlow switches perform an exact match 
check on specific fields of the incoming packets. For every 
incoming packet, the switch goes through its flow table to find 
a matching entry. The flow tables are sequentially numbered, 
starting at 0. The packet-processing pipeline always starts at 
the first flow table. The packet is first matched against the 
entries of flow table 0. If the packet matches a flow entry in a 
flow table, the corresponding instruction set is executed. 
Instructions associated with each flow entry describe packet 
forwarding, packet modification, group table processing, and 
pipeline processing.  
Pipeline-processing instructions enable packets to be sent to 
subsequent tables for further processing and enable aggregated 
information (metadata) to be communicated between tables. 
Flow entries may also forward to a port. This is usually a 
physical port, but may also be a virtual port.  
Flow entries may also point to a group, which specifies 
additional processing. A group table consisting of group 
entries offers additional methods of forwarding (multicast, 
broadcast, fast reroute, link aggregation, etc.). A group entry 
consists of a group identifier, a group type, counters, and a list 
of action buckets, where each action bucket contains a set of 
actions to be executed and associated parameters. Groups also 
enable multiple flows to be forwarded to a single identifier, 
e.g., IP forwarding to a common next hop. Sometimes packet 
may not match a flow entry in any of the flow tables; this is 
called a “table miss”. The action taken in case of a miss 
depends on the table configuration. By default, the packet is 
sent to the controller over the secure channel. Another option 
is to drop the packet [11]. 
 
 
In summary, SDN provides a new concept and architecture for 
managing and configuring networks using a dynamic and agile 
infrastructure. But the networking area is not only 
experiencing the emergence of SDN but also network 
virtualization and network function virtualization. The three 
solutions build an automated, scalable, virtualized and agile 
networking and cloud environment. Therefore, the following 
section introduces network virtualization, network function 
virtualization and their relationship with SDN.  

3. NETWORK VIRTUALIZATION 

The value of SDN in the enterprise lies specifically in its 
ability to provide network virtualization and automated 



6 
 

configuration across the entire network fabric, enabling rapid 
deployment of new services and end systems in addition to 
minimizing operating cost[13][14]. 

3.1 Definition 

Conceptually, network virtualization decouples and isolates 
virtual networks from the underlying network hardware, as 
shown in Fig.6.  
The isolated networks share the same physical infrastructure. 
Once virtualized, the underlying physical network is used only 
for packet forwarding. Multiple independent virtual networks 
are then overlaid on the existing network hardware, offering 
the same features and guarantees as a physical network, but 
with the operating benefits and hardware independence of 
virtual machines [13]. To achieve virtualization at the network 
level, a network virtualization platform (NVP) is needed to 
transform the physical network components into a generalized 
pool of network capacity, similar to how a server hypervisor 
transforms physical servers into a pool of compute capacity. 
Decoupling virtual networks from physical hardware enables 
network capacity to scale without affecting virtual network 
operations [13, 14]. 
Network virtualization projects the network hardware as a 
business platform capable of delivering a wide range of IT 
services and corporate value. It delivers increased application 
performance by dynamically maximizing network asset 
utilization while reducing operating requirements [7]. 
With the emergence of SDN, network virtualization becomes 
engaged in cloud computing applications. NV provides 
network management for the interconnection between servers 
in DCs. It allows the cloud services to be dynamically 
allocated and extend the limits of DC into the network 
infrastructure [15]. 
Network virtualization has many aspects, including virtualized 
dual backbones, network service virtualization, virtual service 
orchestration, network I/O virtualization, and network-hosted 
storage virtualization. Figure 7 presents a general network-
virtualization architecture consisting of firewall-defined layers 
[16, 17]. 

Starting from the bottom: 
e) Infrastructure Provider (InP):  

The infrastructure provider (InP) is responsible for 
maintaining the underlying physical equipment. Each 
organization taking on this role must offer its resources 
virtually to build a virtual network. 

f) Virtual Network Provider (VNP) 
The virtual network provider (VNP) is responsible for 
requesting virtual resources and assembling the virtual 
network for a virtual network operator (VNO). The virtual 
network provider can use a number of infrastructure providers 
to provide virtual network resources.  

g) Virtual Network Operator (VNO) 
VNOs must assess the network requirements for the VNP to 
assemble the virtual resources. VNOs are also responsible for 
managing and granting access to virtual networks. 

h) Service Provider 
Service providers use virtual network resources and services 
to tailor specialized services for end users. 

i) Virtual Network User/End User 
End users consume the resources of the virtual network 
through services provided by the virtual network directly or 
services provided by a service provider. 
 
Three components are essential for a virtual network to 
function properly: virtual servers, virtual nodes, and virtual 
links. Virtual servers provide end users with a means to access 
virtual network services by implementing virtual machines. 
The virtual servers can also switch transparently between 
virtual machines to enable dynamic service changes. This 
feature is particularly helpful in the face of ever-changing 
client needs. Virtual nodes represent physical nodes such as 
routers and switches. A virtual node operates in both the data 
and control planes. The node is configured by VNOs to 
forward data appropriately. Virtual links provide a means of 
dividing and sharing physical links. The concept of virtual 
links ensures flexibility in network topology [16, 17].  

 
Figure 6: The Concept of Network Virtualization 

Virtual Networks 

Logical Load 

Balancer 
Logical 

Firewall 

 Logical SwitchLogical  

Router 

Physical Layer 

VMs 

VSWITCH 

Tunnels 

GATEWAY 

VLANs 

VMs 

Hardware 

Layer 

Software 

Layer 

Virtualization 

Layer 

(Decoupling, 

Automated 

Configurations 



7 
 

3.2 Benefits of Network Virtualization 

Some of the key benefits offered by network virtualization are 
mentioned below [18, 19]: 
 

1) Co-existence of Dissimilar Networks 
Network virtualization makes it possible to create multiple 
virtual networks on the same physical hardware. However, 
these virtual networks can be isolated from other existing 
virtual networks. This isolation can be used as a tool in the 
deployment of networks using different or even incompatible 
routing protocols. 

2) Encouraging Network Innovation 
Like SDN, network virtualization can be used to encourage 
innovation in the networking domain. The isolation that can 
exist between two virtual networks can be used to create 
separate domains for production traffic and test traffic. This 
isolation guarantees that a malfunction experiment will not 
affect production traffic. 

3) Provisioning of Independent and Diverse Networks 
NV deploys packet handling, quality of service (QoS) and 
security policies to configure network operations and 
behaviors. This configuration allows the categorization of 
different networks based on their services, users and 
applications. 

4) Deployment  of agile network capabilities  
The inclusion of agile facilities into the current network 
improves the data transport efficiency and provides robust 
network. With the agile manner, NV allows the integration 
between legacy and advanced networks. Also, it enables 
migration from legacy systems into advanced ones in an agile 
manner.  

5) Resource Optimization 
The dynamic mapping of multiple virtual network nodes to the 
physical substrate ensures that the network hardware is 
utilized up to capacity. This approach cuts down on hardware 
costs and delivers additional profit to the infrastructure 
provider. 

6) Deployment of Distinct Network Services 
Network services such as wireless local area networks 
(WLANs) and Intranet require specific network architectures. 
In addition, a multi-national corporation might need to offer 
distinct services to its employees. This can add complexity to 
the existing overlay network. Network virtualization can help 
alleviate these problems by deploying such services in 
separate virtual networks. 

3.3 Network Function Virtualization 

As for the ambiguity between the concepts of network 
function virtualization (NFV) and SDN, it is necessary to take 
advantage of the definitions and benefits of both technologies.  
 
3.3.1 Definition of NFV 
Expansion of the deployment of various applications and 
network services induced service providers to come up with 
the concept of NFV. Therefore, they established a European 
telecommunication standards institute (ETSI) Industry 
Specification Group for NFV. The group defined the real 
concept of NFV together with its requirements and 
architecture. 
NFV decouples network functions, e.g., firewalls, domain 
name service (DNS), and caching, from dedicated hardware 
appliances and entrusts them to a software-based application 
running on a standardized IT infrastructure, high-volume 
servers, switches, and storage devices. The interesting feature 
of NFV is its availability for both wired and wireless network 
platforms. NFV reduces capital expenditures (CAPEX) and 
operating expenditures (OPEX) by minimizing the purchase of 
dedicated hardware appliances, as well as their power and 
cooling requirements. Virtualization of network functions 
enables fast scale-up or scale-down of various network 
services and provides agile delivery of these services using a 
software application running on commercial off-the-shelf 
(COTS) servers. 
 
3.3.2 NFV and NV 
At the flow level, NV partitions the network logically and 
creates logical segments in it. It can be viewed as a tunnel 
connecting any two domains in a network. Therefore, it 
eliminates the physical wiring for each domain connection and 
replaces it with a virtualized infrastructure.  
While NV can be viewed as a tunnel, NFV deploys services 
on it. NFV virtualizes the functions from layer 4 (L4) till layer 
7 (L7) such as load balancing and firewalls. If an administrator 
can enable modifications at the top of the infrastructure layer, 
NFV can provide changes for L4-L7 functions virtually 
Both NV and NFV may run on high performance x86 
platforms. NV tunnel facilitates VM migration independently 
of the underlying network. NFV enables the functions on NV, 
provides an abstraction and virtual services on it. As NV 

Figure-7: General Network Virtualization Architecture 



8 
 

 
 SDN NFV 

Motivation  Decoupling of control and data planes 
 Providing centralized controller and 
network programmability 

Abstraction of network functions from dedicated 
hardware appliances to COTS servers 

Network 
Location 

Data centers Service provider networks 

Network 
Devices 

Servers and switches Servers and switches 

Protocols OpenFlow N/A 

Applications Cloud orchestration and networking Firewalls, gateways, content delivery network 

Standardization 
Committee 

Open Networking Forum (ONF) ETSI NFV group 

Table I: Comparison between SDN and NFV. 

eliminates the need for network reconfiguration, NFV saves 
time on manual training and provisioning. 
 
3.3.3 NFV and SDN 
SDN and NFV are complementary technologies; they do not 
depend on each other. However, both concepts can be merged 
to mitigate potentially the challenges of legacy networks. The 
functions of the SDN controller can be deployed as virtual 
functions, meaning that the OpenFlow switches will be 
controlled using NFV software. The multi-tenancy 
requirements of the cloud pushed the NFV to support use of a 
software overlay network. This software network is created by 
SDN. It consists of a set of tunnels and virtual switches that 
prohibits sudden interactions between different virtual 
network functions. These functions will be managed using the 
SDN model. 
Merging NFV and SDN enables replacement of expensive and 
dedicated hardware equipment by software and generic 
hardware. The control plane is transferred from dedicated 
platforms to optimized locations in DCs. Abstraction of this 
plane eliminates the need to upgrade network appliances 
simultaneously and thus accelerates the evolution and 
deployment of network services and applications. Table I 
provides a comparison between SDN and NFV concepts. 
 
In summary, while NV and NFV creates virtual tunnels and 
functions to the underlying physical network respectively, 
SDN modifies the physical network. Also, NV and NFV can 
reside on the servers of the existing network, SDN requires the 
construction of new network where the control and data layers 
are decoupled.  

4. SDN APPLICATIONS 

SDN is a promising approach that can overcome the 
challenges facing cloud computing services, specifically NaaS 
and DCNs. Therefore, the following section highlights the 

importance of SDN in these fields and describes its various 
applications in DCNs and NaaS. 

4.1 Data-Center Networks 
4.1.1 Motivation 
The scale and complexity of data-center networks (DCNs) are 
approaching the limit of traditional networking equipment and 
IT operations [20]. Currently, the infrastructure of data-center 
networks is undergoing tremendous and rapid changes.  
The Enterprise Strategy Group (ESG) has defined the reasons 
that have provoked these changes and summarizes them as 
follows: 
 

 Aggressive Alliances in Data Centers 
ESG’s research statistics show that63% of the enterprises 
polled are planning the fusion of their data centers [20]. A 
large expansion may occur in these data centers as they 
harbour extra applications, network traffic, and devices. 
Therefore, many associations might consolidate their data 
centers into multi-tenant facilities. 
 

 Progressive use of virtualization technology 
Large enterprises such as Citrix, Microsoft, and VMware are 
deploying server virtualization technologies. In addition, other 
organizations are now willing to introduce new initiatives to 
their infrastructure that use virtualization technology concepts. 
Consequently, compact integration among physical 
infrastructure, virtual servers, and networks is required. 
 

 Wide Deployment of Web Applications 
Web-based applications are widely used in many 
organizations [20]. Moreover, these applications use server-to-
server communication because they are based on x86 server 
tiers and horizontal scaling. Therefore, data centers need to 
brace themselves for an increase in internal traffic due to 
massive deployment of these Web applications. 



9 
 

Because dynamic scaling in data-center networks is based on 
static network devices (Ethernet and IP packet connections), 
IT teams encounter a discontinuity gap during the 
implementation of scalable data-center networks. However, it 
appears that the flood waters are about to overrun tactical 
network sandbags [20]. The ESG describes the main network 
challenges as follows: 

a) Network Segmentation and Security 
Nowadays, DCN segmentation is based on a mix of VLANs, 
IP subnets, device-based access-control lists (ACLs), and 
firewall rules that have been maintained for years. However, 
these hard-wired segmentation and security controls are not 
compatible with data centers that are populated by VM 
workloads and cloud-computing platforms.  
 

b) Traffic Engineering 
Any traffic congestion or hardware failure will affect the 
performance and latency of all other devices because network 
traffic follows fixed paths and multiple hops. In addition, the 
deployment of VMs and virtual servers in recent DCNs adds a 
supplementary burden to network performance [21]. 
 

c) Network Provisioning and Configuration 
Although virtual servers are provisioned by cloud 
orchestration tools, the policies of the data-center equipment 
and control paths must be set up on a device-to-device or 
flow-to-flow basis, and heterogeneous networks must be 
managed by multiple management systems. Even though 
network management software can help at this stage, network 
configuration changes remain “a tedious link-level slog” [20].  
Further information concerning DCN challenges can be found 
in [20, 21]. Ultimately, DCN discontinuity will be a threat to 
business operations because it may induce degradations in 
service level, delays in business initiatives, and increase in IT 
operating costs [20]. Although networking vendors have 
launched some innovations such as network fabric and 

convergence architectures to fix the fractures in the DCN 
infrastructure, these solutions do not address the problems in 
heterogeneous networks. Nevertheless, the software-defined 
network paradigm is a promising solution to solve these 
challenges in DCN setups. 
 
4.1.2 SDN Deployment in DCNs 
In SDN OpenFlow based-networks, the virtual network 
segments are centrally configured, and network security is 
simplified by directing flows to security policy services. 
Moreover, the central controller transforms the core and 
aggregation devices into a “high-speed transport backplane” 
[20]. The controller can provision a new device that is added 
to the network and allow it to receive the configuration policy 
when it appears online. Finally, SDN improves DCN 
infrastructure, its power consumption, and its various metrics. 
Due to these improvements and modifications, different SDN 
applications in DCNs have been proposed.  
 

a. Changes in DCN Infrastructure 
Automation and virtualization of data-center LANs and 
WANs has resulted in a flexible and dynamic infrastructure 
that can accommodate operating-cost challenges. As a result, 
Vello Systems [22] has proposed an open and scalable 
virtualization solution that connects the storage and 
computation resources of the data center to private and public 
cloud platforms. To facilitate the migration of VMs from their 
Layer 2 network, Layer 2 was extended across multiple DCs 
using Layer 3 routing. However, Layer 3 routing introduces 
challenges in intra-data center connectivity and cannot meet 
the requirements for VM migration across DCs. Therefore, the 
proposed solution is based on a cloud-switching system that 
enables cloud providers and enterprises to overcome the 
traditional Layer 2 domains, the direct server-to-server 
connection, and virtual server migration.  
Because the switching system supports integration of end-to-
end network attributes, its operating system can provide a  

 
Changes in DCN Infrastructure 

Proposed Solution Objective Functionality 
 
 

SDN-based Vello 
Systems [22] 

 Override the traditional 
Layer 2 domains and Layer 3 
routing challenges 
 Facilitate live VM 
migration within and across 
DCNs 

 Enable migration of performance and QoS and security 
policies with VM migration 
 Provide a unified view and control of the global cloud 
for WAN resource optimization 
 Provide network automation and virtualization of LAN 
and WAN connectivity and resource allocation 

 
 
 
Switching with in-
packet Bloom 
filters (SiBF) [23] 

 
 

 Transform the DCN into a 
software problem  
 Leave the responsibility for 
device implementation to 
hardware vendors 

 Override the single point of failure problem by using a 
distributed controller system 
 Provide load-balancing services  
 Guarantee better scalability and fault tolerance 
performance in DCN by using rack managers 
 No evaluation of the proposed routing approach  
 Lack of traffic engineering studies of different flow 
sizes 

Table II: SDN in DCN Infrastructure. 



10 
 

framework for SDN. Thus, OpenFlow-based allow the cloud 
to migrate performance, QoS, and security policies 
concurrently with VM migration. Finally, the SDN-based 
Vello systems permit a unified view and control of the global 
cloud for WAN resource optimization. 
In [23], an OpenFlow-based test-bed implementation, 
switching with in-packet Bloom filters (SiBF), has been 
proposed as data-center architecture. The suggested 
architecture was inspired by the onset of SDN, which 
transforms the DCN into a software problem while leaving the 
hardware vendors responsible for device implementation. 
SiBF introduces an army of rack managers that act as 
distributed controllers, contain all the flow-setup 
configurations, and require only topology information. 
Intrinsically, SiBF uses IP addresses for VM identification and 
provides load-balanced services based on encoding strategies. 
The architecture is implemented on a multi-rooted tree 
(CORE, AGGR, and ToR) because this is a common DCN 
topology.  
However, other topologies can be considered in a SiBF data-
center architecture. The OpenFlow controller, e.g., the rack 
manager, installs the flow mapping into the ToR switches and 
consists of directory services, topology services, and topology 
discovery. With its modules, the controller can be 
implemented as an application in the NOX controller. Flow 
requests are handled by neighbouring rack managers in case of 
any failure in the master controller. However, when an 
OpenFlow switch fails, its traffic is interrupted until the SiBF 
installs new mappings (new flow routes) in the ToR switches. 
The proposed data-center architecture, based on distributed 
OpenFlow controllers, guarantees better scalability and fault-
tolerant performance in the DCN. Table II summarizes various 
approaches for implementing SDN in a DCN infrastructure. 
 

b. The Green DCN 
Implementing an energy-efficient data-center network is an 
important step towards a “green” cloud. An energy-aware 
data-center architecture based on an OpenFlow platform has 
been proposed in [24]. Because designing an energy-efficient 
data center requires an experimental environment, the authors  
 

in [24] analyzed the proposed architecture based on the 
Reducing Energy Consumption in Data-Center Networks and 
Traffic Engineering (ECODANE) project. The platform 
provides guidelines for measuring and analyzing energy 
consumption in DCN elements (ports, links, and switches) 
based on realistic measurements from NetFPGA-based 
OpenFlow switches. The NetFPGA energy model was 
extracted from several energy measurements using the Xilinx 
power-estimation tool. The Xpower tool uses the Verilog 
source code of the OpenFlow switch as its input and estimates 
the power measurements.  
The power-estimation model was tested using the Mininet [25] 
emulator, a simple testbed for developing OpenFlow 
applications. The Elastic Tree topology was used to test the 
proposed data-center architecture. The OpenFlow switches are 
controlled by the NOX controller, which consists of an 
optimizer, a power controller, and routing modules. The 
optimizer finds the minimum power of the network subset that 
satisfies the traffic conditions and QoS requirements. The 
minimum power estimate is deduced from the number of links 
or switches that are turned off or put in sleep mode. The 
power-control module determines the power state of the 
network elements based on the OpenFlow messages and 
Mininet APIs and notifies switches to enter the appropriate 
power-saving mode. The last module is used to find the 
optimal routing path in the DCN. This study is a first stage in 
building a green data center based on the new SDN paradigm. 
Table III summarizes various SDN approaches in a green 
DCN. 
Based on the results and the proposed data-center architecture 
described in [24], an extension to OpenFlow switches for 
saving energy consumption in data centers has been proposed 
in [26] and can be used later on as a reference. The authors 
presented a solution to decrease the environmental influence 
of massive carbon emissions in data centers. This solution 
consists of controlling power consumption in data-center 
switches based on an extension to OpenFlow switches. This 
extension adds new messages to the OpenFlow protocol which 
enable the controller to control the switch over different 
power-saving modes. More detailed information about the  
 

 
Green DCN 

Proposed Solution Objective Functionality 
 
 
 
OpenFlow platform 
for energy-aware data 
center [24] 

 
 
 

Provide guidelines for studying 
energy consumption in DCN 
elements 

 Estimate the minimum power for a given network 
topology 
 Satisfy the traffic conditions and QoS 
requirements 
 Provide a power module in the controller that 
determines the power state of network elements 
 No evaluation of the proposed approach on 
different network topologies 

 
OpenFlow switch 
controller (OSC) [26] 

 
Decrease the influence of carbon 
emissions in the DCs 

 Reduce configuration time of network elements  
 Enable flexible power management operations 
based on the programmable controller 

Table III: SDN in a Green DCN. 



11 
 

new power-control messages and the design of the OpenFlow 
Switch Controller (OSC) can be found in [26]. OpenFlow can 
reduce configuration time and enable flexible programmable 
controller-based management operations and is therefore 
recommended for use in cloud data centers. 
 

c. Improving DCN Metrics 
[27] describes an experimental study for improving the 
performance, scalability, and agility of a cloud data center 
using the OpenFlow protocol. The authors built a prototype 
cloud data center in which the route traffic was controlled by 
an OpenFlow controller; different metrics were tested on the 
prototype. The proposed algorithms and the prototype design 
are discussed in detail in [27]. Testing of performance, 
throughput, and bandwidth for various network sizes and 
topologies was done using the Mininet emulator with its 
numerous tools. The results show that bandwidth performance 
and the number of flow modifications per second were better 
with the Kernel switches, a test image of OpenFlow, than with 
user-space switches. However, replacement of data-center 
switches with OpenFlow switches is not recommended until 
standardization of the software platform has been achieved. 
Furthermore, SDN has often been mentioned as an approach 
to implementing and improving the metrics of data-center 
networks. In [28], a loss-free multipathing (MP) control 
congestion (CC) approach for a DCN was proposed. The 
authors introduced integration between MP and CC to provide 
lossless delivery and better throughput for the DCN.  

The integration mechanism was based on a dynamic load-
balancing multipathing approach [29]. The proposed 
mechanism uses OpenFlow switches and a central controller 
to reduce network overhead (path load updates) and enable the 
switches to deal with any network situation even during traffic 
bursts [28]. OpenFlow is enabled only in the access switches. 
The controller collects information about the network from 
their routing tables. The controller updates the switches with 
any change in the “path load" on the associated routes with a 
short delay. Although the MP-CC integration mechanism 
shows lossless delivery due to fast reaction of the switches to 
network changes, the proposed algorithm considers path load 
as the only parameter to handle DCN traffic. 
Recent applications have imposed many requirements on 
cloud service providers, and therefore, cloud data-center 
networks have to be multi-tenant, low-cost, flexible, and 
reconfigurable on demand. On the other hand, current DCN 
strategies cannot meet all these requirements, and therefore 
[30] proposed an SDN-based network solution.  
The proposed prototype consists of a central controller that 
manages multiple OpenFlow switch instances and packet 
filtering. The controller stores the database of the management 
information of the L2 virtual network, called the slice. The 
proposed prototype removes the limitations on the number of 
VLANs and responds to on-demand network updates based on 
APIs that simplify these configuration updates. However, the 
flow-setup process in the switch introduces a longer flow-
setup time than in legacy networks [30]. 

 
DCN Metrics 

Proposed Solution Objective Functionality 
OpenFlow 

platform for 
scalable and agile 
data center [25] 

 Improve performance, 
scalability, and agility in a 
cloud data center 

 Improve bandwidth performance and the number of flow modifications 
per second in the kernel switches 
 Reduce cost of operations and switch configuration time 

Loss-free 
multipathing 

congestion control 
DCN [28] 

 Provide lossless delivery 
and better throughput for DCN 
using OpenFlow switches and 
a central controller 

 Reduce path-load update overhead of the network 
 Handle any network status and traffic burst states 
 Use the path load as the only parameter to evaluate traffic in the DCN 

 
SDN-based DCN 
solution [30] 

 Meet the requirements of 
different applications in a 
cloud DCN 

 Remove the limitation on the number of VLANs  
 Respond to on-demand network updates  
 Introduce longer flow-setup time compared to legacy networks 

 
OpenFlow re-
routing control 
mechanism in 

DCN [32] 

 
 

 Evaluate DCN 
performance and manage its 
flows 

 Use the least loaded route and  alternative paths for flow congestion  
 Provide storage of switch statistics, tracking all the detected hosts in the 
network and various routing and re-routing functions 
 Provide better load distribution, throughput, and link utilization compared 
to other routing mechanisms 
 Combat severe packet loss and high packet sojourn time in case of low 
processing time for private networks 

 
 

Scissor [33] 

 
 Modify packet headers to 
minimize DC traffic and 
network power consumption 

 Replace redundant header information with a short identifier, the Flow ID 
 Combine packets of the same flow in the same ID 
 Improve latency and introduce slight improvements in power gains 
 Absence of scissor operations within the rack that is responsible for 75% 
of DCN traffic 

Table IV: Improvements in DCN Metrics with SDN. 



12 
 

Another study proposed an approach to evaluate DCN 
performance by implementing an OpenFlow re-routing control 
mechanism to manage DCN flows [31]. Performance is 
represented by load distribution, throughput, and link 
utilization metrics. The proposed re-routing scheme initially 
uses the least loaded route; in case of congestion, large flows 
are re-routed onto alternative paths, while small flows pursue 
their track. The re-routing framework consists of an NOX 
controller, a monitor to store switch statistics, a host tracker 
that tracks the entire set of detected hosts in the network, and 
finally a routing engine which is responsible for routing and 
re-routing functions.  
A comparison between the single-path, equal-cost multi-path, 
and OpenFlow re-routing mechanisms showed that the 
proposed framework has better load distribution, throughput, 
and link utilization. Table IV summarizes the improvements in 
DCN metrics using the SDN approach. 
In spite of the benefits provided by introducing SDN into 
DCNs, [32] concluded that building an OpenFlow system 
requires observation of the relative load on the OpenFlow 
controller. The authors studied the performance of this 
controller in educational and private networks and concluded 
that a processing time of 240 µs is sufficient for an 
educational network, but that private networks require a more 
powerful controller with better processing time or distributed 
controllers; otherwise, severe packet loss and high packet 
sojourn times may occur [32].  
The OMNet++ simulation environment was used to evaluate 
system performance by measuring relative packet loss and 
mean packet sojourn time.  
Packet headers are responsible for 30%–40% of DC traffic 
[33] and network power consumption. Therefore, the authors 
of [33] proposed a new framework, the “Scissor”, which 
replaces redundant header information with a short identity, 
the “Flow ID”.  
The Flow ID identifies all the packets belonging to the same 
flow. Trimming of header information is done by micro-
architectural hardware that consists of multiplexers to select 
the fields that will be retained by the Scissor, a buffer to hold 
the complete header temporarily, ternary content-addressable 
memory (TCAM), and a controller that generates the Flow 

IDs. Experimental simulations were carried out to test the 
performance of the proposed framework. Results showed that 
Scissor introduced substantial latency improvements, as high 
as 30%.The evaluated power gains were only 20% in the best-
case scenario because no scissor operations were performed 
within the rack that is responsible for 75% of the DCN traffic 
[33]. 
 

d. Virtualization in DCNs 
The SDN approach mitigates the interconnection challenges of 
cloud DCNs [32]. The characteristics of heterogeneous DCN 
architectures (VL2, Portland, and Elastic Tree) are represented 
by OpenFlow rules. These rules are passed to all DCN 
elements to implement “inter-DCN connectivity” [34]. These 
rules support VM migration between different DCN schemes 
without connectivity interruption based on re-routing 
mechanisms. 
Live VM migration in DCN is crucial in the case of disaster 
recovery, providing fault tolerance, high availability, dynamic 
workload balance, and server consolidation [35]. This 
reference proposed a network fabric based on OpenFlow, 
“CrossRoads”, that enables both live and offline VM 
migration across data centers. CrossRoads supports East-West 
traffic for VM migration within data centers and north-south 
traffic for VM migration to external clients. The framework 
consists of a centralized controller in each data center, thus 
extending the controller placement problem. Table V presents 
a couple of implemented SDN approaches to virtualized 
DCNs. 
Experimental results showed that the proposed network fabric 
has negligible overhead with respect to the default network 
and outperforms the default network by 30% [35].In summary; 
SDN is a promising solution that alleviates most of the 
challenges faced by cloud DCNs. However, recent research 
studies have been based on small topologies or emulators. 
Therefore, coupling SDN to a DCN and a cloud resource 
environment and testing the performance of the scheme on a 
real large network is needed to achieve better understanding of 
the performance of SDN-based DCN setups.  
 

 
Virtualized DCN 

Proposed Solution Objective Functionality 
 

Inter-DCN 
connectivity based on 

OpenFlow [34] 

 
 
Mitigate the interconnection 
challenges in a cloud DCN 

 Insert new OpenFlow rules to implement inter-DCN 
connectivity in the cloud 
 Support live VM migration between different DCNs 
 Minimize connectivity interruption of VMs during the 
migration process 

 
 

CrossRoads [35] 

 
Facilitate live and offline 
VM migration across data 
centers 

 Support East-West traffic for migration within DCs 
 Support North-South traffic for VM migration to external 
clients 
 Provide negligible overhead with respect to that of legacy 
networks 

Table V: Virtualized DCN using SDN. 



13 
 

 
Figure-8: Components of SOA 

 
Figure-9: SOA in Cloud Computing Environment 

4.2 Network as a Service 

4.2.1 Service Oriented Architecture  
The service oriented architecture (SOA) is the concept of 
building a software system based on multiple integrated 
logical units. These units known as services allow better 
construction and management to solve large problems in 
different domains. The basic components of SOA are 
elucidated in Fig.8. The architecture depends on the Services 
used by the Service User entity. The Service Provider hands 
over these services and the Service Registry coordinates the 
services’ information and publishes them for the Service User 
[36]. 
SOA satisfies the requirements of different applications by 
balancing the computational resources. It virtualizes and 
integrates these resources in form of services entities.  
Therefore, the basic aspect of SOA is the “coupling” between 
different systems. Every system has information about the 
behavior and implementation of its partners. The information 
gathering procedure facilitates the coupling feature in SOA.  
SOA eliminates the tight coupling and lack of interoperability 
between diverse middleware in a network. It has been 
endorsed by Cloud Computing (CC) services; Infrastructure as 
a Service (IaaS), Platform as a Service (PaaS) and Software as 
a Service (SaaS). Fig.9 elucidates SOA in CC environment. 
CC implements SOA in its different fields to exploit the 
resources’ virtualization feature. This in turn allows SOA to 
introduce Network as a Service (NaaS) into CC [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.2 Motivation 
Cloud computing offers on-demand provisioning of 
computational resources for tenants using a pay-as-you-go 
model and outsources hardware maintenance and purchases 
[37]. However, these tenants have limited visibility and 
control over network resources and must resort to overlay 
networks to complete their tasks. The separation of 
computation from end-to-end routing in traditional networks 
in the cloud-computing environment could affect data-plane 
performance and control-plane flexibility. 
These drawbacks can be addressed by NaaS. It provides 
secure and direct access for tenants to cloud resources and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
offerings and enables efficient use of the network 
infrastructure in the data center [37]. NaaS is a new Internet-
based model that enables a communication service provider to 
provide network resources on demand to the user according to 
a service-level agreement (SLA). NaaS can also be seen from 
the service point of view as an abstraction between network 
functions and protocols [38].  
The top abstraction layers deal with NaaS as a service that 
uses the network and customizes its capacity. Customization 
in the lower layers is replaced by resource management 
policies. [13] defines Naas as Telco as a Service (TaaS), 
which offers a “common network and IT substrate that can be 
virtualized and combined as a slice". 
Naas is also defined as a Web 2.0 model that provides 
software as a service utility by exposing network capabilities 
(billing, charging, location, etc.) as APIs to third-party 
application service providers [39]. In NaaS, the owners of the 
underlying network infrastructure offer virtual network 
services to a third party. There is a clear demarcation between 
the roles of infrastructure providers (InPs) and virtual network 
operators (VNOs). 
The InP is responsible for the operating processes in the 
underlying network infrastructure, and the VNO is responsible 
for the operating processes in the virtual networks that run on 
top of the physical infrastructure.  
The NaaS scenario offers many business incentives, such as 
higher revenues for InPs and lower capital and operating 
expenditures for VNOs, because it enables a number of virtual 
networks to run on the same underlying network 
infrastructure. Detailed information on the interaction between 
InPs and VNOs is available in [13].  
In summary, NaaS provides the following benefits to operators 
[40]: 
 Faster time to transition NaaS to market.  
 Self-service provisioning. 
 Flexibility in upgrading NaaS resources without long-

term constraints.  



14 
 

 Payment only for resources used.  
 Repair and maintenance are part of the service.  
 Greater control in adding, changing, and deleting services. 
 
4.2.3 NaaS and SDN Integration 
NaaS is one of the promising opportunities for SDN. NaaS 
providers can use SDN orchestration systems to obtain a 
powerful user interface for controlling and viewing network 
layers. A variety of research studies have proposed NaaS 
platforms in an SDN environment. 
 

a. Cloud-NaaS Model 
[38] introduced a cloud-based network architecture which 
evaluates the provision, delivery, and consumption of NaaS. 
The proposed cloud-based network consists of four layers: the 
network resource pool (NRP), the network operation interface 
(NOI), the network run-time environment (NRE), and the 
network protocol service (NPS).  
The NRP consists of network resources: the bandwidth, 
queues, and addresses for packet forwarding. The NOI is a 
standardized API for managing and configuring the NRP. The 
NRE is the environment that performs billing, resource 
allocation, interconnection, and reliability assurance for 
protocol service instances through service migration in cases 
of network failures and high load [38]. Finally, the NPS is 
responsible for describing, managing, and composing the new 
implemented network protocols.  
The proposed architecture is implemented using the OpenFlow 
protocol. The implementation consists of two layers: the 
controller control plane and the network data plane. The first 
layer is responsible for NRE and NPS functions. It consists of 
a master controller that distributes the data stream to the slave 
servers and slave controllers that perform switching, routing, 
and firewall functions. The data-plane layer contains the 
OpenFlow switches that perform packet forwarding services 
based on controller instructions. The authors in [38] presented 
NaaS in a cloud-based network, but performance and 
evaluation studies of the suggested implementation were not 
carried out. 
The limitations on tenants in controlling and configuring 
networks in current cloud environments provided a motivation 
for the authors of [41] to implement a CloudNaaS model. The 
proposed networking framework enables the tenant to access 
functions for virtual network isolation, addressing, and 
deployment of middlebox appliances [42] for caching and 
application acceleration.  
The CloudNaaS consists of the cloud controller and the 
network controller. The cloud controller manages virtual 
resources and physical hosts and supports the APIs which set 
network policies. It also specifies user requirements and 
transforms them into a communication matrix that resides on 
the OpenNebula framework. These matrices are compiled into 
network-level rules by the network controller (NOX 
controller).  
The network controller installs these rules in virtual switches, 
monitors and manages the configuration of network devices, 
and decides on the placement of VMs in the cloud. The 

authors proposed optimization techniques to mitigate the 
hardware limitations mentioned in [41]. These techniques 
were implemented in the network controller and were 
designed to optimize traffic during VM placement and 
forwarding-entry aggregation using the same output ports. The 
implemented CloudNaaS exhibited good performance with an 
increasing number of provisioning requests and used cloud 
resources in an effective manner. 
 

b. Network Management in NaaS 
[43] presents a scalable graph-query design, NetGraph, which 
supports network-management operations in NaaS modules. 
NetGraph is implemented on a software module on a SDN 
platform. The network controller consists of multiple service 
modules that collect information about the physical and virtual 
network infrastructure.  
The NetGraph module resides in the centralized controller, 
collects information about network topology to calculate the 
graph of the existing topology, and supports the service 
modules (NaaS modules) in their query mission. Details on the 
implementation design and the algorithms used (Dijkstra, 
TEDI, and APSP) for finding the shortest paths in a weighted 
graph are addressed in [43]. The authors showed that the 
proposed algorithms have practical compute time and are 
suitable for centralized architectures. 
NaaS can be seen as the ultimate connection between SDN 
and cloud computing. NaaS is a supplementary scheme for 
SDN; while SDN is responsible for packet forwarding and 
network administration, NaaS provides application-specific 
packet processing for cloud tenants [42].With NaaS schemes, 
the operators can control the bandwidth, routing, and QoS 
requirements of their data. Eventually, with SDN, operators 
can leverage current NaaS initiatives and build their own SDN 
infrastructure [44]. However, integration with existing 
hardware and software systems and providing diverse and 
efficient APIs are crucial requirements for adopting the SDN 
and NaaS concepts [40]. 

 
 
 
Although the SDN concept is attracting the attention of IT 
organizations and networking enterprises and has various 

 
Figure 10: SDN challenges. 

 

SDN 
Challenges

Reliability

Low Level 
Interfaces

ASIC and 
CPU 

Limitations

SecurityController 
Placemnet

Performance

Scalability



15 
 

applications in DCNs and NaaS, the overall adoption of SDN 
has encountered various obstacles, such as reliability, 
scalability, latency, and security challenges. Section V 
describes these challenges and presents some of the recent 
solutions proposed in the literature. Overcoming these 
challenges might assist IT organizations and network 
enterprises to improve the various opportunities and services 
offered by SDN. 
 

5.  SDN CHALLENGES AND EXISTING SOLUTIONS 

Although SDN is a promising solution for IT and cloud 
providers and enterprises, it faces certain challenges that could 
hinder its performance and implementation in cloud and 
wireless networks [45]. Below, a list of SDN challenges and 
some of their existing solutions are discussed and illustrated in 
Fig.10. 

5.1 Reliability 

The SDN controller must intelligently configure and validate 
network topologies to prevent manual errors and increase 
network availability [46]. However, this intelligence can be 
inhibited because of the brain-split problem that makes the 
controller liable to a single point of failure [47, 48]. 
In legacy networks, when one or more network devices fail, 
network traffic is routed through alternative or nearby nodes 
or devices to maintain flow continuity. However, in 
centralized controller architecture (SDN) and in the absence of 
a stand-by controller, only one central controller is in charge 
of the whole network. If this controller fails, the whole 
network may collapse. To address this challenge, IT 
organizations should concentrate on exploiting the main 
controller functions that can increase network reliability [46]. 
In case of path/link failure, the SDN controller should have the 
ability to support multiple-path solutions or fast traffic 
rerouting into active links.  
If the controller supports technologies such as Virtual Router 
Redundancy Protocol (VRRP) and Multi-Chassis Link 
Aggregation Group (MC-LAG), these might contribute to 
increasing network availability. In case of controller failure, it 
is important that the controller can enable clustering of two or 
more SDN controllers in an active stand-by mode; however, 
memory synchronization between active and stand-by 
controllers must be maintained [46].  
The authors in [23] showed that centralized controller 
architecture will interrupt network traffic and flow requests in 
case of controller failure. Specifically, they proposed a 
distributed architecture, SiBF, which consists of an army of 
rack managers (RMs), one per rack, acting as controllers. 
Consequently, when the master controller fails, flow requests 
are handled by another stand-by controller (RM) until the 
master controller comes back up. In case of switch failure, 
SiBF installs new mappings (new back-up flow entries) in the 
ToR switches for each active entry. The packets in the ToR 
will be routed to their destinations on the alternative paths 
indicated by the back-up entries. Another suggested solution 
that can counteract reliability limitations in a centralized 
architecture is described in [28]. The integration between free 

multipathing and control congestion is based on a dynamic 
load-balancing multipathing approach which runs a distributed 
algorithm in case of controller failure. The algorithm updates 
the switches with any changes in “path load” on the associated 
routes in cases of traffic congestion and load imbalance. 

5.2 Scalability 

Decoupling between the data and control planes distinguishes 
SDN from a traditional network. In SDN, both planes can 
"evolve independently” as long as APIs connect them [49], 
and this centralized view of the network accelerates changes in 
the control plane. However, decoupling has its own 
drawbacks. Besides the complexity of defining standard APIs 
between both planes, scalability limitations may arise. 
Voellmy et al. [50] concluded that “when the network scales 
up in the number of switches and the number of end hosts, the 
SDN controller can become a key bottleneck”.  
As the bandwidth and the number of switches and flows 
increase, more requests will be queued to the controller, which 
may not be able to handle them all. Studies on a SDN 
controller (NOX) have shown that it can handle 30K 
requests/s [51]. This may be sufficient for enterprises and 
campus networks, but it is a bottleneck for data-center 
networks with high flow rates. In addition, [51] estimates that 
a large data center consisting of 2 million virtual machines 
may generate 20 million flows per second. However, current 
controllers can support approximately 105 flows per second in 
the optimal case [52, 23]. In addition to controller overload, 
the flow-setup process may impose limitations on network 
scalability. 
 
Flow setup consists of four steps: 
1- A packet arrives at a switch and does not match any flow 

entry. 
2- The switch sends a request to the controller to get 

instructions on how to forward the packet. 
3- The controller sends a new flow entry with new 

forwarding rules back to the switch. 
4- The switch updates its entries in the flow table. 

 
The performance of the setup process depends on switch 
resources (CPU, memory, etc…) and controller (software) 
performance. The update time of the switch’s forwarding 
information base (FIB) introduces delay in setting up any new 
flow. Early benchmarks on SDN controllers and switches 
showed that the controller could respond to a flow-setup 
request within one millisecond, while hardware switches could 
“support a few thousand installations per second with a sub-10 
ms latency at best” [49].  
Flow-setup delays may pose a challenge to network 
scalability. Furthermore, network broadcast overhead and the 
proliferation of flow-table entries limit SDN scalability [46]. 
The SDN platform may cause limited visibility of network 
traffic, making troubleshooting nearly impossible. Prior to 
SDN, a network team could quickly spot, for example, that a 
backup was slowing the network down. The solution would 
then be to reschedule the backup to a less busy time. 



16 
 

Unfortunately, with SDN, only a tunnel source and a tunnel 
endpoint with User Datagram Protocol (UDP) traffic are 
visible, but crucially, one cannot see who is using the tunnel. 
There is no way to determine whether the problem is the 
replication process, the email system, or something else. The 
true top talker is shielded from view by the UDP tunnels, 
which means that when traffic slows and users complain, 
pinpointing the problem area in the network is a challenge. 
With this loss of visibility, troubleshooting is hindered, 
scalability limitations emerge, and delays in resolution could 
become detrimental to the business [48, 53]. In order to 
minimize the proliferation of flow entries, the controller 
should use header rewrites in the network core. The flow 
entries will be at the ingress and egress switches.  
Improved network scalability can also be ensured by enabling 
VM and virtual storage migration between sites, as in IaaS 
software middleware based on OpenFlow and “CrossRoads”, 
a network fabric based on OpenFlow, which was discussed in 
previous sections [34, 35]. Another solution to scalability 
concerns is proposed in “DIFANE” [54]. This is a distributed 
flow-management architecture that can scale up to meet the 
requirements (large numbers of hosts, flows, and rules) of 
large networks.  
A viable solution to scalability challenges is proposed in the 
“CORONET” fault-tolerant SDN architecture, which is 
scalable to large networks because of the VLAN mechanism 
installed in local switches [55]. CORONET has fast recovery 
from switch or link failures, supports scalable networks, uses 
alternative multipath routing techniques, works with any 
network topology, and uses a centralized controller to forward 
packets. It consists of modules responsible for topology 
discovery, route planning, traffic assignment, and shortest-
route path calculation (the Dijkstra algorithm). The main 
feature of CORONET is the use of VLANs, which can 
simplify packet forwarding, minimize the number of flow 
rules, and support scalability properties.  
In another solution, “DevoFlow” [56,57],micro-flows are 
managed in the data plane and more massive flows in the 
controller, meaning that controller load will decrease and 
network scalability will be maximized. This approach 
minimizes the cost of controller visibility associated with 
every flow setup and reduces the effect of flow-scheduling 
overhead, thus enhancing network performance and 
scalability.  
Finally, [50] describes a scalable SDN control framework, 
McNettle, which is executed on shared-memory multicore 
servers and based on Nettle [58]. Experiments showed that 
McNettle could serve 5000 switches with a single controller 
with 46 cores and could handle 14 million flows per second 
with latency below 200 μs for light loads and 10 ms for loads 
consisting of up to 5000 switches [50]. 

 

5.3 Performance under Latency Constraints 

SDN is a flow-based technique, and therefore its performance 
is measured based on two metrics: flow-setup time, and the 
number of flows per second that the controller can handle 
[46]. There are two ways to setup a flow: proactive and 

reactive. In proactive mode, flow setup takes place before 
packet arrival at the switch, and therefore, when a packet 
arrives, the switch already knows how to deal with it. This 
mode has negligible delay and removes the limits on the 
number of flows per second that can be handled by the 
controller.  
In general, the SDN controller fills the flow table with the 
maximum number of possible flows. In reactive mode, flow 
setup is performed when a packet arriving at the switch does 
not match any of the switch entries. Then the controller will 
decide how to process/handle that packet, and the instructions 
will be cached onto the switch. As a result, reactive flow-setup 
time is the sum of the processing time in the controller and the 
time for updating the switch as the flow changes. Therefore, 
flow initiation adds overhead that limits network scalability 
and introduces reactive flow-setup delay [59, 60].  
In other words, a new flow setup requires a controller to agree 
on the flow of traffic, which means that every flow now needs 
to go through the controller, which in turn instantiates the flow 
on the switch [61, 62, 63]. However, a controller is an 
application running on a server OS over a 10 GB/sec link 
(with a latency of tens of milliseconds). It is in charge of 
controlling a switch which could be switching 1.2 TB/sec of 
traffic at an average latency of 1μs. Moreover, the switch may 
deal with 100K flows, with an average of 30K being dropped. 
Therefore, a controller may take tens of milliseconds to set up 
a flow, while the life of a flow transferring 10MB of data (a 
typical Web page) is 10 msec [64, 52].  
The authors in [57] carried out various setup experiments to 
test the throughput and latency of various controllers. They 
varied the number of switches, number of threads, and 
controller workload. Based on these experiments and 
simulations, they concluded that adding more threads beyond 
the number of switches does not improve latency and that 
serving a number of switches larger than the number of 
available CPUs increases controller response time [60]. The 
experiments also showed that controller response time varies 
between 4 and 30 ms for different number of switches with 4 
threads and 212 requests on the fly. However, the experimental 
setup and assumptions described in [60] need to be verified in 
realistic network environments.  
Dealing with 100K flows requires that the switch ASICs must 
have this kind of flow capability. Current ASICs do not have 
this capability, and therefore the flow table must be used as a 
cache [64]. In conclusion, flow setup rate is anemic at best on 
existing hardware [64], and therefore only a limited number of 
flows per second are possible. The big O notation O(n) linear 
lookup for software tables cannot approach the O(1) lookup of 
a hardware-accelerated TCAM in a switch, causing a drop in 
the packet-forwarding rate for large wildcard table sizes [62]. 
To overcome performance limitations, the key factors that 
affect flow-setup time should be considered. As mentioned in 
[46], these key factors are the processing and I/O performance 
of the controller. Early benchmarks suggested that controller 
performance can be increased considerably by well-known 
optimization techniques such as I/O batching [60]. Another 
viable solution to alleviate the performance challenge was 



17 
 

proposed under the name Maestro [65, 66]. Maestro used two 
basic parameters; the "input batching threshold” (IBT), a 
tuneable threshold value that determines the stage for creating 
a flow-task process to handle the flow request, and the 
“pending raw-packet threshold” (PRT) that determines the 
allowable number of pending packets in the queue to be 
processed. Calibration of these parameters will identify 
suitable values that will decrease latency and maximize 
network throughput according to network state. As the values 
of PRT and IBT increase, throughput increases and delays 
decrease [65]. Optimization techniques should be used to find 
the optimal range for values of PRT and IBT.  
Finally, the DevoFlow and McNettle architectures described 
previously can be considered as feasible solutions to reduce 
network latency. McNettle implementations have shown that 
its improvements result in a 50-fold reduction in controller 
latency [50]. 

5.4 Controlling the Data Path between the ASIC and the CPU 

Although the control data path in a line-card ASIC is fast, the 
data path between the ASIC and the CPU is not used in the 
frequent operations of the traditional switch, and therefore it is 
considered as a slow path. The ProCurve 5406lz Ethernet 
switch has a bandwidth of 300 GB/sec, but the measured 
loopback bandwidth between the ASIC and the CPU is 35 
MB/sec [57]. Note also that the slow-switch CPU limits the 
bandwidth between the switch and the controller. For instance, 
the bandwidth of the flow-setup payload has been measured 
between the 5406lz switch and the OpenFlow controller and 
seems to be 10 MB/sec [57]. However, the DIFANE [54] 
architecture leverages these limitations by distributing the 
OpenFlow wildcard rules among various switches to ensure 
that forwarding decisions occur in the data plane. 
Controlling the data path between the ASIC and the CPU is 
not a traditional operation [61]. OpenFlow specifies three 
counters for each flow-table entry: the number of matches, the 
number of packet bytes in these matches, and the flow 
duration. Each counter is specified as 64 bits, and therefore 
this adds 192 bits (24 bytes) of extra storage per table entry 
[67]. OpenFlow counters and the logic to support them add 
significant ASIC complexity and area and place more burdens 
on the CPU [63, 67, 68]. If counters are implemented in the 
ASIC hardware, it may be very difficult to change their 
function as the SDN protocol evolves because this would 
require re-designing the ASIC or deploying new switch 
hardware [67]. Moreover, transferring the local counter from 
the ASIC to the controller can dramatically limit SDN 
performance. 
In addition, adding SDN support to create ASICs means 
finding space for structures not typically found on an ASIC; 
the per-flow byte counters used by OpenFlow could be the 
largest such structures. In other words, the counters take space 
from the ASIC area, in full knowledge that this area in 
considered precious because designing an ASIC costs a lot of 
money and time. However, because the cost of switch ASICs 
depends on their area, there is an upper limit on the area of a 
cost-effective ASIC [67]. Because ASIC area is valuable, this 
places limits on the sizes of on-chip memory structures such 

as TCAMs to support flow-table entries and per-entry 
counters. However, any silicon area allocated to counters will 
not be available for look-up tables [67].  
As is well known, switches have a CPU to manage the ASICs, 
but the bandwidth between the two is limited [67]. Therefore, 
storing the counters in the CPU and DRAM instead of in the 
ASIC would simplify the path from the counters to the 
controller and minimize the overhead on the controller to 
access these counters. Another feasible solution that could 
address the limitations discussed above was suggested in [67]. 
The authors proposed software-defined counters (SDCs) 
because implementing counters in software does not require 
re-designing the ASIC and can support more innovations. In 
the proposed SDC, the ASIC does not contain any counters, 
but it does generate event records that will be added to the 
buffer. Whenever a buffer block is full, the ASIC moves it to 
the CPU. The CPU extracts the records and updates its 
counters, which are stored on the attached DRAM. SDC 
proposes two system designs: 
i) A SDC switch in which the counter is moved out of the 
ASIC and replaced by buffer blocks. 
ii) A SDC switch in which the CPU is installed on the ASIC. 
Although the second design requires additional ASIC space, it 
minimizes the bandwidth between the data plane and the CPU.  

5.5 Use of Low-Level Interfaces between the Controller and 
the Network Device 

Although SDN simplifies network management by developing 
control applications with simple interfaces to determine high-
level network policies, the underlying SDN framework needs 
to translate these policies into low-level switch configurations 
[69]. The controllers available today provide a programming 
interface that supports a low-level, imperative, and event-
driven model. The interface reacts to network events such as 
packet arrivals and link status updates by installing and 
uninstalling individual low-level packet-processing rules, rule-
by-rule and switch-by-switch [70]. In such a situation, 
programmers must constantly consider whether un-installing 
switch policies will affect other future events monitored by the 
controller. Also, they must coordinate multiple asynchronous 
events at the switches to perform even simple tasks.  
In addition, this interface generates a time-absorption problem 
and requires detailed knowledge of the software module or 
hardware device that is performing the required services. 
Many researchers are developing various programming 
languages that enable the programmer to describe network 
behaviour using high-level abstractions, leaving the run-time 
system and compiler to take care of implementation details. 
[71] proposes FML, a high-level programming language 
consisting of operators that allow or deny flows while 
coordinating the flows through firewalls and maintaining QoS. 
However, it is an inflexible language because it cannot 
redirect or move flows as they are processed [72]. 
Finally, Flog, an event-driven logic programming language, 
was proposed in [70]. Introducing logic programming to SDN 
is useful for processing network statistics and incremental 
controller-state updates. The main feature that differentiates 



18 
 

Flog from other languages is its Ethernet learning switch. The 
learning process consists of monitoring, grouping, and storing 
the packets that arrive at a switch and then transferring this 
information to a learning database. Afterwards, the policy 
generator creates low-level rules that flood all arriving 
packets, and then, based on the information learned, the policy 
creates a precise high-level forwarding rule. 

5.6 Controller Placement Problem 

The controller placement problem influences every aspect of a 
decoupled control plane, from flow-setup latencies to network 
reliability, to fault tolerance, and finally to performance 
metrics. For example, long-propagation-delay wide-area 
networks (WANs) limit availability and convergence time. 
This has practical implications for software design, affecting 
whether controllers can respond to events in real-time or 
whether they must push forwarding actions to forwarding 
elements in advance [73]. This problem includes controller 
placement with respect to the available network topology and 
the number of controllers needed. The user defines various 
metrics (latency, increase in the number of nodes, etc.) that 
control the placement of the controller in a network.  
Random placement for a small k- value in the k-median 
problem, a clustering analysis algorithm, will result in an 
average latency between 1.4x and 1.7x larger than that of the 
optimal placement [73]. Finding the optimal controller 
placement is a hot SDN research topic, especially for wide-
area SDN deployments because they require multiple 
controllers and their placement affects every metric in the 
network. Improving reliability is important because network 
failures cause disconnections between the control and 
forwarding planes and could disable some of the switches. 
 A reliability-aware controller placement problem has been 
proposed in [74]. The main objective of the problem can be 
understood using the following question: how to place a given 
number of controllers in a certain physical network such that 
the predefined objective function is optimized. The authors in 
[74] considered the reliability issue as a placement metric 
which is reflected by the percentage of valid control paths. 
They developed an optimization model that maximized the 
expected percentage of valid control paths. This percentage is 
affected by the location of the controller on one of the 
candidate nodes, the number of controller-to-controller 
adjacencies, the available number of controllers, and the 
reservation of the switches on the controller. Finally, a random 
placement algorithm and greedy algorithms have been 
suggested as heuristics to solve the reliable controller 
placement problem. 
[75] states that any failure that disconnects the forwarding 
plane from the controller may lead to serious performance 
degradation. Based on this observation, the authors in [75] 
described a (path) resiliency (path protection)-aware controller 
placement problem. They considered connection resiliency 
between the controller and the switch as a placement metric 
which was reflected by the ability of the switches to protect 
their paths to the controller. The proposed heuristics aimed to 
maximize the possibility of fast failover based on resilience-

aware controller placement and control-traffic routing in the 
network. These heuristics consisted of two algorithms for 
choosing the best controller location and maximizing the 
connection resiliency metric: the optimized placement 
algorithm and the approximation (greedy) placement 
algorithm. 
Finally, the authors of [73] developed a latency-aware 
controller placement problem. Their objective was not to find 
the optimal solution for the latency-aware controller 
placement problem, but to provide an initial analysis for 
further study of the formulation of fundamental design 
problems. Therefore, the problem aimed to minimize the 
average propagation latency based on suitable controller 
placement. The minimization was based on an optimization 
model generated on the basis of the minimum k-median 
problem [73]. 

5.7 Security 

Based on statistical studies carried out by IT organizations 
[76], 12% of respondents in IT business technologies stated 
that SDN has security challenges, and 31% of respondents in 
IT business technologies were undecided whether SDN is a 
less secure or a more secure network paradigm than others. 
Clearly, IT organizations believe that SDN may pose certain 
security challenges. According to the above studies, SDN 
security risks emerge from the absence of integration with 
existing security technologies and the inability to poke around 
every packet. Furthermore, improving the intelligence of the 
controller software may increase controller vulnerability to 
hackers and attack surfaces. If hackers access the controller, 
they will damage every aspect of the network, and it will be 
“game over” [76].  
Increasing SDN security requires from the controller the 
ability to support the authentication and authorization classes 
of the network’s administrators. In addition, leveraging the 
impact of security requires from the administrators the ability 
to use the same policies for traffic management to prevent 
access to SDN control traffic. Additional security-aware 
solutions are the implementation of an intelligent access 
control list (ACL) in the controller to filter packets and 
complete isolation between the tenants sharing the 
infrastructure. Finally, the controller should be able to alert the 
administrators in case of any sudden attack and to limit control 
communication during an attack [46]. 
SDN is a promising technology for computer networks and 
data-center networks, but it still lacks standardization policies. 
The current SDN architecture does not include standards for 
understanding topology, delay, or loss. Other features that are 
not available include loop detection and the ability to fix 
errors in a state. SDN does not support horizontal 
communications between network nodes to enable 
collaboration between devices [77].  
 
 
As SDN gains in popularity, several researchers and 
enterprises have developed various SDN initiatives. They have 
proposed SDN prototypes, development tools, and languages 



19 
 

for OpenFlow and SDN controllers and SDN cloud-computing 
networks [78]. Section VI covers some recent SDN 
implementations and tools. 

6. RESEARCH INITIATIVES FOR SDN 

SDN enables network owners and operators to build a simpler, 
customizable, programmable, and manageable network. 
According to the network research community, SDN will alter 
the future of networking and will import new innovations to 
the market [79]. With this in mind, a number of research 
initiatives have proposed SDN prototypes and applied them to 
DCN, wireless networking, software-defined radio, 
enterprises, and campus networks.  
 

6.1 SDN Prototypes 

The concept of SDN emerged in 2005, when the authors of 
[80] proposed a 4D approach to network control and 
management. Afterwards, a new network architecture, Ethane, 
which provides network control using centralized policies, 
was described in [81].  
Ethane uses a centralized controller that holds network 
policies to control flow routing. It also uses Ethane switches 
which receive instructions from the controller to forward 
packets to their destinations. Policies are programmed using a 
flow-based security language based on DATALOG. Ethane 
was deployed in the Stanford computer science department to 
serve 300 hosts and in a small business to serve 30 hosts. Its 
deployment was an experiment to evaluate central network 
management, and it showed that a single controller could 
support 10,000 new flow requests per second for small 
network designs and that a distributed set of controllers could 
be deployed for large network topologies. Ethane has two 
limitations that prevent it from being implemented using 
current traditional network techniques. Initially, it requires 
knowledge about network users and nodes, and it demands 
control over routing at the flow level [82]. These limitations 
were addressed by NOX, a network operating-system 
framework.  
Under NOX, applications can access the source and 
destination of each event, and routing modules can perform 
constrained routing computations. NOX makes it possible to 
build a scalable network with flexible control because it uses 
flows as its intermediate granularity [82]. 
 

6.2 Cloud Computing and Virtualization in SDN 

Other recent studies [83] have developed an SDN-based 
controller framework, Meridian, for cloud-computing 
networks. Meridian provides a network services model that 
enables users to construct and manage a suitable logical 
topology for their cloud workloads. In addition, it allows 
virtual implementations on the underlying physical networks. 
Inspired by SDN, Meridian is composed of three logical 
layers: the network model and API layer, network 
orchestration, and interfaces to network devices. The first 
layer provides interaction with the network through 
declarative and query APIs; the declarative API creates the 

shape of the multi-virtual machine application, while the query 
API supports requests for topology views and network 
statistics. The orchestration layer provides services such as a 
global view of the data-center topology, routing algorithms, 
and scheduling network configuration and control functions. 
The lowest layer is responsible for creating virtual networks. 
In addition to the importance of Meridian in supporting a 
service-level model, it is considered as an initial prototype of 
SDN in the cloud. Researchers would like to explore the 
performance of Meridian in cases of sensitive workloads, the 
scalability of this framework to support large networks, and its 
ability to recover failed plans [83]. 
 

6.3 SDN Tools and Languages 

Various tools and languages are used to monitor and 
implement SDN. Certain SDN initiatives have focussed on a 
forming platform, Onix, to implement SDN controllers as a 
distributed system for flexible network management [84]. 
Other studies have presented a network debugging tool, 
Veriflow [85], which is capable of discovering the faults in 
SDN application rules and hence preventing them from 
disrupting network performance. Additional initiatives [86] 
have developed a routing architecture, Routeflow, which is 
inspired by SDN concepts and provides interaction between 
commercial hardware performance and flexible open-source 
routing stacks. Hence, it opens the door to migration from 
traditional IP deployments to SDN. 
In addition to recent studies that developed physical SDN 
prototypes, other researchers [62] have provided an efficient 
SDN innovation, Mininet. Mininet is a virtual emulator which 
provides an environment for prototyping any SDN idea. 
Whenever the prototype evaluation is acceptable, then it can 
be deployed in research networks and for general use [62]. 
However, Mininet’s services are hindered by certain 
limitations: poor performance at high loads and its lightweight 
virtualization approach. 
Research has also been directed toward developing control 
support for SDN and describing new language approaches to 
program OpenFlow networks.  
[72] proposes a design for Frenetic, a high-level language for 
programming OpenFlow architectures. Frenetic consists of a 
query language based on SQL syntax, a stream-processing 
language, and a specification language for packet forwarding. 
With the combination of these three languages, Frenetic 
simplifies the programmer’s task by enabling him/her to 
produce forwarding policies as high-level abstractions.   
It addresses some of OpenFlow’s shortcomings which are due 
to the lack of consistency between installing a rule in the 
switches and allowing other packets to be processed, in 
addition to the lack of synchronization between the packet 
arrival time and the rule installation time. It consists of two 
abstraction levels, the source-level operators that deal with 
network traffic, and the run-time system responsible for 
installing rules into switches.  
In addition to the Frenetic language that can program 
OpenFlow networks, a number of other OpenFlow 
programming languages have been proposed, such as Procera 



20 
 

[87, 88] and Nettle [58]. These languages are based on 
functional reactive programming, facilitate network 
management, and support event-driven networks.  

6.4 SDN Vendors 

[89] describes the Floodlight controller platform. It is an 
enterprise-class, Apache-licensed, Java-based OpenFlow 
controller that supports OpenStack orchestration and virtual 
and physical switches and manages OpenFlow and non-
OpenFlow networks. In addition, NEC has designed a network 
virtualization architecture encapsulated as NEC 
ProgrammableFlow. The ProgrammableFlow technology 
provides management of their networking fabric. NEC has 
created custom physical switches, PF5240 and PF5820, to 
facilitate the ProgrammableFlow network architecture. The 
ProgrammableFlow controller can control any 
ProgrammableFlow or OpenFlow switch in a virtual network 
[90]. [91] provides an option list of existing OpenFlow 
controllers (NOX, Beacon [92], Helios, etc...) and switches 
(software and hardware options such as Open vSwitch, Pronto, 
etc…) to design SDN prototypes.  
Besides these initiatives, researchers and enterprises have 
designed virtualization platforms for SDN [93]. NICIRA has 
created a complete SDN solution: the Network Virtualization 
Platform (NVP). It can be injected over existing network 
infrastructure or designed into emerging network fabrics. The 
NVP system works in collaboration with Open vSwitches that 
are configured in the hypervisor or used as gateways to legacy 
VLANs. Network virtualization is tasked to the Controller 
Cluster. The cluster is an array of control structures running on 
servers separate from the network infrastructure. Control is 
separated not only from network devices, but also from the 
network itself. Each cluster is capable of controlling thousands 
of Open vSwitch devices. The NVP architecture combines 
control and switching abstractions to provide a versatile 
network solution [94].  
Finally, IT organizations and enterprises are focusing on 
applying SDN not only to data-center networks (LANs), but 
also to wireless local-area networks (WLANs) and wide-area 
networks (WANs), where OpenFlow will function as an 
overlay over L2 and L3 virtual private networks (VPN). HP 
has announced that an SDN-centralized controller can 
minimize the cost and complexity of implementing WAN 
optimization schemes. A prototype of SDN, Odin, was 
described in [95] and was intended to enable network 
operators to deploy WLAN services as network applications. 
Odin consists of a master, agents, and applications. The master 
runs as an application on the OpenFlow controller, controls 
the agents, and updates the forwarding table of access points 
(APs) and switches, and the agents run on the APs and collect 
information about the clients. 

7. CONCLUSIONS 

SDN aims to simplify network architecture by centralizing the 
control-plane intelligence of L2 switching and L3 routing 
equipment. It also markets network hardware as a product 
service and forms the basis of network virtualization. The 
generalized SDN architecture consists of the SDN controller 

and SDN-compatible switches. Because SDN makes it 
possible to build programmable and agile networks, academic 
researchers and network engineers are exploiting its flexibility 
and programmability to generate strategies that simplify the 
management of data-center LANs and WANs and make them 
more secure. Besides, SDN supports NaaS, the new Internet-
based model that acts as a link between cloud computing and 
SDN. While SDN manages forwarding decisions and network 
administration, NaaS will provide packet-processing 
applications for cloud tenants. In addition, researchers are 
proposing various SDN prototypes that will serve DCNs, 
wireless networks, enterprises, and campus networks. Despite 
all the promising opportunities that accompany SDN, it 
encounters certain technical challenges that might hinder its 
functionality in cloud computing and enterprises. Therefore, 
IT organizations and network enterprises should be aware of 
these challenges and explore the functionality of the SDN 
architecture to counter these criticisms. 
 
 

8. REFERENCES 

 
[1] Anderson, T., Peterson, L., Shenker, S., Turner, J., "Overcoming the 

Internet Impasse through Virtualization." Computer, vol. 38, no. 4: 34–
41, 2005. 

[2] HP, "Deliver HP Virtual Application Networks," 
http://h17007.www1.hp.com/docs/interopny/4AA4-3872ENW.pdf, 
2012. 

[3] HP, "Realizing the Power of SDN with HP Virtual Application 
Networks," http://h17007.www1.hp.com/docs/interopny/4AA4-
3871ENW.pdf, 2012. 

[4] Brocade Communications Systems, “Network Transformation with 
Software-Defined Networking and Ethernet Fabrics,” California, USA, 
http://www.brocade.com/downloads/documents/positioning-
papers/network-transformation-sdn-wp.pdf, 2012. 

[5] Xia, W.F., Foh, C.H., Xie, H.Y., Niyato, D., Wen, Y.G., "A Survey on 
Software-Defined Networking," (In Submission) IEEE Journal of 
Communications Surveys and Tutorials, May 2013. 

[6] Mendonça, M.,Nunes Astuto, B., Nguyen, X.N., Obraczka, K., Turletti, 
T., "A Survey of Software-Defined Networking: Past, Present, and 
Future of Programmable Networks," (In Submission) Networking and 
Telecommunication, HAL, INRIA, June 2013. 

[7] Duan, Q., Yan, Y.H., Vasilakos, A.V., "A Survey on Service-Oriented 
Network Virtualization toward Convergence of Networking and Cloud 
Computing," IEEE Transactions on Network and Service Management, 
vol.9, no.4, pp.373–392, December 2012. 

[8] Big Switch Networks, The Open SDN Architecture, 
http://www.bigswitch.com/sites/default/files/sdn_overview.pdf, 2012. 

[9] Shin, M.K., Ki-Hyuk Nam, K.H., Kim, H.J., "Software-Defined 
Networking (SDN): A Reference Architecture and Open APIs," 
Proceedings, 2012 International Conference on ICT Convergence 
(ICTC), pp.360–361, 15–17 October 2012. 

[10] IBM, Software-Defined Networking: A New Paradigm for Virtual, 
Dynamic, Flexible Networking, October 2012. 

[11] OpenFlow Switch Consortium, OpenFlow Spec, v1.3.0 
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf, 2012. 

[12] Ferro, G., "OpenFlow and Software-Defined Networking," 
http://etherealmind.com/software-defined-networking-openflow-so-far-
and-so-future/, Nov. 2012 



21 
 

[13] NICIRA, "It’s Time to Virtualize the Network," 
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virt
ualize%20the%20Network%20White%20Paper.pdf, 2012. 

[14] Lippis, N. J., "Network Virtualization: The New Building Blocks of 
Network Design," 
https://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns431/ns
725/net_implementation_white_paper0900aecd80707cb6.pdf, 2007. 

[15] Wen; Heming, Tiwary; Prabhat Kumar, Le-Ngoc; Tho, “Network 
Virtualization: Overview,” Wireless Virtualization, Springer Briefs, pp. 
5-10, Google Books Web, 2013 

[16] Carapinha, J., Feil, P., Weissmann, P., Thorsteinsson, S., Etemoglu, Ç. 
Ingþórsson, Ó., Çiftçi, S., Melo, M., "Network Virtualization: 
Opportunities and Challenges for Operators," Future Internet-FIS 2010: 
138–147, 2012. 

[17] Khan, A., Zugenmaier, A., Jurca, D., Kellerer, W., "Network 
Virtualization: a Hypervisor for the Internet?" IEEE Communications 
Magazine, vol.50, no.1, pp.136–143, January 2012. 

[18] Leon-Garcia, A., Mason, L.G., “Virtual Network Resource Management 
for Next-Generation Networks,” IEEE Commun. Mag., vol. 41, no. 7, 
pp.102–109, July 2003. 

[19] Network Virtualization Study Group, “Advanced Network 
Virtualization:  Definition, Benefits, Applications, and Technical 
Challenges,” https://nvlab.nakao-lab.org/nv-study-group-white-
paper.v1.0.pdf, 2012. 

[20] Oltsik, J., Laliberte, B., IBM and NEC Bring SDN/OpenFlow to 
Enterprise Data Center Networks, Enterprise Strategy Group Tech 
Brief, 2012. 

[21] Murphy, A., Keeping Your Head Above the Cloud: Seven Data Center 
Challenges to Consider Before Going Virtual, F5 Networks, U.S.A., 
2008. 

[22] Vello Systems, “Optimizing Cloud Infrastructure with Software-Defined 
Networking,”http://www.margallacomm.com/downloads/VSI_11Q4_OP
N_GA_WP_01_1012_Booklet.pdf, 2012. 

[23] Macapuna, C.A.B., Rothenberg, C.E., Magalhaes, M.F., "In-Packet 
Bloom Filter-Based Data-Center Networking with Distributed 
OpenFlow Controllers, "IEEE 2010GLOBECOM Workshops, pp.584–
588, 6–10 December 2010. 

[24] Thanh, N.H.,Nam, P.N.,Truong, T.-H.,Hung, N.T.,Doanh, L.K., Pries, 
R., "Enabling Experiments for Energy-Efficient Data-Center Networks 
on an OpenFlow-Based Platform,"Proceedings,2012 Fourth 
International Conference on Communications and Electronics (ICCE), 
pp.239–244, 1–3 August 2012. 

[25] Stanford University, “Mininet: Rapid Prototyping for Software-Defined 
Networks,”http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
, 2012.  

[26] Vu, T.H.,Nam, P.N.,Thanh, T.,Hung, L.T.,Van, L.A.,Linh, N.D.,Thien, 
T.D.,Thanh, N.H., "Power-Aware OpenFlow Switch Extension for 
Energy Saving in Data Centers, "Proceedings, 2012 International 
Conference on Advanced Technologies for Communications (ATC), , 
pp.309–313, 10–12 October 2012. 

[27] Baker, C., Anjum, A., Hill, R., Bessis, N., Kiani, S.L., "Improving 
Cloud Datacenter Scalability, Agility and Performance Using 
OpenFlow,"Proceedings,2012 Fourth International Conference on 
Intelligent Networking and Collaborative Systems (INCoS), pp.20–27, 
19–21 September 2012. 

[28] Fang, S.,Yu, Y., Foh, C.H., Aung, K.M.M., "A Loss-Free Multipathing 
Solution for Data Center Network Using Software-Defined Networking 
Approach," IEEE Transactions on Magnetics, vol.49, no.6, pp.2723–
2730, June 2013. 

[29] Yu, Y.,Aung, K.M.M., Tong, E.K.K., Foh, C.H., "Dynamic Load 
Balancing Multipathing for Converged Enhanced Ethernet," 2010 IEEE 
International Symposium on Modeling, Analysis, and Simulation of 

Computer and Telecommunication Systems (MASCOTS), pp.403–406, 
17–19 August 2010. 

[30] Sun, L., Suzuki, K., Yasunobu, C., Hatano, Y., Shimonishi, H., "A 
Network Management Solution Based on OpenFlow Towards New 
Challenges of Multitenant Data Centers,"Proceedings,2012 Ninth Asia-
Pacific Symposium on Information and Telecommunication 
Technologies (APSITT), pp.1–6, 5–9 November 2012. 

[31] Kanagavelu, R., Mingjie, L.N., Khin, M.M., Lee, F.B.-S., Heryandi, H., 
"OpenFlow-Based Control for Re-Routing with Differentiated Flows in 
Data Center Networks,"Proceedings,2012 18th IEEE International 
Conference on Networks (ICON), pp.228–233, 12–14 December 2012. 

[32] Pries, R., Jarschel, M., Goll, S., "On the Usability of OpenFlow in Data 
Center Environments,"Proceedings,2012 IEEE International Conference 
on Communications (ICC), pp.5533–5537, 10–15 June 2012. 

[33] Kannan, K., Banerjee, S., "Scissors: Dealing with Header Redundancies 
in Data centers through SDN, "Proceedings, 2012 Eighth International 
Conference and 2012 Workshop on Systems Virtualization Management 
(SVM), Network and Service Management (CNSM), pp.295–301, 22–26 
October 2012. 

[34] Boughzala, B., Ben Ali, R., Lemay, M., Lemieux, Y., Cherkaoui, O., 
"OpenFlow Supporting Inter-Domain Virtual Machine 
Migration,"Proceedings,2011 Eighth International Conference on 
Wireless and Optical Communications Networks (WOCN), pp.1–7, 24–
26 May 2011. 

[35] Mann, V., Vishnoi, A., Kannan, K., Kalyanaraman, S., "CrossRoads: 
Seamless VM Mobility across Data Centers through Software-Defined 
Networking,"2012 IEEE Network Operations and Management 
Symposium (NOMS), pp.88–96, 16–20 April 2012. 

[36] Santhi; Ram Kumar, “A Service Based Approach for Future Internet 
Architectures,” PhD Thesis University of Agder, 2010, Web, Feb. 2011 

[37] Costa, P., Migliavacca, M., Pietzuch, P., Wolf, A., "NaaS: Network-as-
a-Service in the Cloud," 2012 USENIX: Management of Internet, Cloud, 
and Enterprise Networks and Services (Hot-ICE'12), San Jose CA,, 
April 2012. 

[38] Feng, T.,Bi, J.,Hu, H.Y.,Cao, H., "Networking as a Service: A Cloud-
Based Network Architecture." Journal of Networks, vol.6, no.7,pp. 
1084–1090, July 2011. 

[39] Gutierrez, M.A.F., Ventura, N., "Mobile Cloud Computing Based on 
Service-Oriented Architecture: Embracing Network as a Service for 
Third-Party Application Service Providers," Proceedings, ITU 
Kaleidoscope 2011: The Fully Networked Human—Innovations for 
Future Networks and Services (K-2011), pp.1–7, 12–14 December 2011. 

[40] TERENA Network Architects Workshop, Network as a Service 
principle virtual CPE as a Service,  
http://www.terena.org/activities/netarch/ws1/slides/reijs-NaaS-221112-
NAW.pdf, November 2012. 

[41] Benson, T., Shaikh, A.A.A., Sahu, S., "CloudNaaS: A Cloud 
Networking Platform for Enterprise Applications," Proceedings, Second 
ACM Symposium on Cloud Computing (SOCC '11),New York, NY, 
2011. 

[42] Costa, P., "Bridging the Gap between Applications and Networks in 
Data Centers," ACM SIGOPS Operating Systems Review,vol.47,no. 1, 
pp.3–8, January 2013. 

[43] Raghavendra, R., Lobo, J.,Lee, K.-W., "Dynamic Graph Query 
Primitives for SDN-Based Cloud Network Management," Proceedings, 
First Workshop on Hot Topics in Software-Defined Networks(HotSDN 
'12), New York, NY, pp.97–102, 2012. 

[44] Khan, F., Naas as Step towards SDN, 
http://www.telecomlighthouse.com/naas-as-step-towards-sdn/,March 
2013. 

[45] Sharkh, M.A.; Jammal, M.; Shami, A.; Ouda, A., "Resource allocation 
in a network-based cloud computing environment: design challenges," 



22 
 

Communications Magazine, IEEE , vol.51, no.11, pp.46,52, November 
2013. 

[46] Ashton, Metzler, and Associates, Ten Things to Look for in an SDN 
Controller, Technical Report, 2013. 

[47] Ferro, G., OpenFlow and Software-Defined Networking, 
http://etherealmind.com/software-defined-networking-openflow-so-far-
and-so-future/, November 2012.  

[48] Yazıcı, V.,Sunay, O., Ercan, A.O., “Controlling a Software-Defined 
Network via Distributed Controllers”, NEM Summit, Istanbul, Turkey, 
http://faculty.ozyegin.edu.tr/aliercan/files/2012/10/YaziciNEM12.pdf, 
October 2012. 

[49] Yeganeh, S.H., Tootoonchian, A., Ganjali, Y., "On Scalability of 
Software-Defined Networking," IEEE Communications Magazine, 
vol.51, no.2, pp.136–141, February 2013. 

[50] Voellmy, A.,Wang, J.C., "Scalable Software-Defined Network 
Controllers," Proceedings, ACM SIGCOMM 2012 Conference on 
Applications, Technologies, Architectures, and Protocols for Computer 
Communication, pp. 289–290, 2012. 

[51] Tavakoli, A., Casado, M.,Koponen, T.,Shenker, S., "Applying NOX to 
the Data Center," Proceedings, Ninth ACM SIGCOMM Workshop on 
Topics in Networks (Hotnets-IX), October 2009. 

[52] Enterasys Networks, “Software-Defined Networking (SDNs) in the 
Enterprise”,http://www.enterasys.com/company/literature/SDN_tsbrief.
pdf, October 2012. 

[53] Bae, H., “SDN Promises Revolutionary Benefits, but Watch Out for the 
Traffic Visibility Challenge,” 
http://www.networkworld.com/news/tech/2013/010413-sdn-traffic-
visibility-265515.html,January 2013. 

[54] Yu, M.L., Rexford, J.,Freedman, M.J.,Wang, J., "Scalable Flow-Based 
Networking with DIFANE," Proceedings, ACM SIGCOMM 2010 
Conference (SIGCOMM '10), New York NY, pp. 351–362, 2010. 

[55] Kim, H.J., Santos, J.R., Turner, Y., Schlansker, M., Tourrilhes, J., 
Feamster, N., "CORONET: Fault Tolerance for Software-Defined 
Networks,"Proceedings,2012 20th IEEE International Conference on 
Network Protocols (ICNP), pp.1–2, October 30–November 2, 2012. 

[56] Curtis, A., Mogul, J.,et al., "DevoFlow: Scaling Flow Management for 
High-Performance Networks," Proceedings, ACM SIGCOMM 2011 
Conference (SIGCOMM '11), New York NY,pp.254–265, 2011. 

[57] Mogul, J.C., Tourrilhes, J.,et al., "DevoFlow: Cost-Effective Flow 
Management for High-Performance Enterprise Networks," Proceedings, 
Ninth ACM SIGCOMM Workshop on Hot Topics in Networks(Hotnets-
IX),New York, NY, 2010.  

[58] Voellmy, A., Hudak, P., “Nettle: Functional Reactive Programming of 
OpenFlow Networks,” Practical Aspects of Declarative Languages 
(PADL) Symposium, January 2011. 

[59] Rexford, J., “Software-Defined Networking”, COS 461: Computer 
Networks Lecture, 
http://www.cs.princeton.edu/courses/archive/spring12/cos461/docs/lec2
4-sdn.pdf, 2012. 

[60] Tootoonchian, A., Gorbunov, S.,et al., "On Controller Performance in 
Software-Defined Networks," Proceedings,2nd USENIX Conference on 
Hot Topics in Management of Internet, Cloud, and Enterprise Networks 
and Services, p. 10, 2012. 

[61] Chu, J.,Malik, M.S.,Software-Defined Networks. 
http://www.cs.illinois.edu/~pbg/courses/cs538fa11/lectures/25-Jonathan-
Salman.pdf,September 2012. 

[62] Lantz, B., Heller, B., McKeown, N., "A Network in a Laptop: Rapid 
Prototyping for Software-Defined Networks," Proceedings, Ninth ACM 
SIGCOMM Workshop on Hot Topics in Networks, New York, NY, 
2010. 

[63] Foster, N., Freedman, M.,et al., “Language Abstractions for Software-
Defined Networks (LADA),” Philadelphia, PA, January 2012. 

[64] Pluribus Networks, “Of Controllers and Why NICIRAHad to Do a Deal 
(Part III: SDN and OpenFlow Enabling Network Virtualization in the 
Cloud),” https://www.pluribusnetworks.com/blog/item/5-of-controllers-
and-why-nicira-had-to-do-a-deal-part-iii-sdn-and-openflow-enabling-
network-virtualization-in-the-
cloudhttp://pluribusnetworks.com/blog/,August 2012.  

[65] Cai, Z.,Cox, A.L.,Ng, T.S.E., Maestro: A System for Scalable OpenFlow 
Control, Rice University Technical Report TR10-08, December 2010. 

[66] Cai, Z.,Cox, A.L.,Ng, T.S.E., Maestro: Balancing Fairness, Latency, 
and Throughput in the OpenFlow Control Plane, Rice University 
Technical Report TR11-07, December 2011.  

[67] Mogul, J.C., Congdon, P., "Hey, You Darned Counters! Get Off my 
ASIC!" First Workshop on Hot Topics in Software-Defined Networks, 
pp. 25–30, 2012. 

[68] Wolf, W., "A Decade of Hardware/Software Codesign," Computer, 
vol.36, no.4, pp.38–43, April 2003. 

[69] Scott, R.C.,Wundsam, A., et al., What, Where, and When: Software 
Fault Localization for SDN, Technical Report No. UCB/EECS-2012-
178, July 2012. 

[70] Katta, N.P.,Rexford, J.,Walker, D., “Logic Programming for Software-
Defined Networks,” 
http://www.cs.princeton.edu/~jrex/papers/xldi12.pdf,July 2012. 

[71] Hinrichs, T.L.,Gude, N.S., Casado, M., Mitchell, J.C.,Shenker, S., 
“Practical Declarative Network Management,” First ACM Workshop on 
Research in Enterprise Networking (WREN '09), pp.1–10, 2009. 

[72] Foster, N.,Harrison, R., et al., "Frenetic: A Network Programming 
Language,” Proceedings, 16th ACM SIGPLAN International Conference 
on Functional Programming (ICFP '11), New York, NY, pp.279–291, 
2011. 

[73] Heller, B., Sherwood, R., McKeown, N., "The Controller Placement 
Problem,” First Workshop on Hot Topics in Software-Defined Networks, 
pp. 7–12, 2012. 

[74] Hu, Y.-N.,Wang,W.-D.,et al., “On the Placement of Controllers in 
Software-Defined Networks,” 
http://www.sciencedirect.com/science/article/pii/S100588851160438X,
October 2012.  

[75] Beheshti, N.,Zhang, Y., “Fast Failover for Control Traffic in Software-
Defined Networks,” Next-Generation Networking and Internet 
Symposium(Globecom), Ericsson Research, 2012. 

[76] Metzler, J., "Understanding Software-Defined Networks," 
InformationWeek Reports, pp.1–25,  
http://reports.informationweek.com/abstract/6/9044/Data-
Center/research-understanding-software-defined-networks.html, October 
2012. 

[77] Marsan, C.D., “IAB Panel Debates Management Benefits, Security 
Challenges of Software-Defined Networking,” IETF Journal, October 
2012. 

[78] Abu Sharkh, M.; Ouda, A.; Shami, A., "A resource scheduling model for 
cloud computing data centers," Wireless Communications and Mobile 
Computing Conference (IWCMC), 2013 9th International , pp.213,218, 
1-5 July 2013. 

[79] Kobayashi, M.,Seetharaman, S.,et al., "Maturing of OpenFlow and 
Software-Defined Networking through Deployments," Elsevier, pp.1–
50, August 2012. 

[80] Greenberg, A., Hjalmtysson,G., et al., "A Clean-Slate 4D Approach to 
Network Control and Management," ACM SIGCOMM Computer 
Communication Review,vol.35,no. 5, pp.41–54, October 2005. 

[81] Casado, M., Freedman, M.J., Pettit, J.,Luo, J.Y., Gude, N., McKeown, 
N., Shenker, S., "Rethinking Enterprise Network Control," IEEE/ACM 
Transactions on Networking, vol.17, no.4, pp.1270–1283, August 2009. 

[82] Gude, N.,Koponen, T.,et al., "NOX: Towards an Operating System for 
Networks," ACM SIGCOMM Computer Communication 
Review,vol.38,no. 3, pp.105–110, July 2008. 



23 
 

[83] Banikazemi, M., Olshefski, D., Shaikh, A., Tracey, J.,Wang, G.H., 
"Meridian: an SDN Platform for Cloud Network Services," IEEE 
Communications Magazine, vol.51, no.2, pp.120–127, February 2013. 

[84] Koponen, T.,Casado, M.,et al., "Onix: A Distributed Control Platform 
for Large-Scale Production Networks," Proceedings, Ninth USENIX 
Conference on Operating Systems Design and Implementation 
(OSDI'10),Berkeley, CA, 2010. 

[85] Khurshid, A.,Zhou, W.X., Caesar, M.,Godfrey, P.B., "VeriFlow: 
Verifying Network-Wide Invariants in Real Time," First Workshop on 
Hot Topics in Software-Defined Networks (HotSDN '12),New York, 
NY,pp.49–54, 2012. 

[86] Nascimento, M.R., Rothenberg, C.E.,et al., "Virtual Routers as a 
Service: The RouteFlow Approach Leveraging Software-Defined 
Networks," Proceedings, Sixth International Conference on Future 
Internet Technologies (CFI '11), New York, NY,pp.34–37, 2011. 

[87] Kim, H.J., Feamster, N., "Improving Network Management with 
Software-Defined Networking," IEEE Communications Magazine, 
vol.51, no.2, pp.114–119, February 2013. 

[88] Voellmy, A.,Kim, H.J., Feamster, N., "Procera: A Language for High-
Level Reactive Network Control," First Workshop on Hot Topics in 
Software-Defined Networks (HotSDN '12), New York, NY, pp. 43–48, 
2012. 

[89] Big Switch Networks, FloodLight OpenFlow Controller, 
http://www.projectfloodlight.org/floodlight/,2013. 

[90] Mehra, R., Designing and Building a DataCenter Network: An 
Alternative Approach with OpenFlow, 
http://www.nec.com/en/global/prod/pflow/images_documents/Designing
_and_Building_a_Datacenter_Network.pdf, January 2012. 

[91] OpenFlow Components, http://archive.openflow.org/wp/openflow-
components/, 2011. 

[92] Erickson, D., Beacon, 
https://openflow.stanford.edu/display/Beacon/Home, February 2013. 

[93] Zarifis, K, Kontesidu, G., "OpenFlow Virtual Networking: A Flow-
Based Network Virtualization Architecture," Telecommunication 
Systems Laboratory and School of Information and Communication 
Technology, Master of Science Thesis, Stockholm, Sweden, 2009. 

[94] NICIRA, Network Virtualization Platform, 
https://www.vmware.com/products/nsx/, February 2013. 

[95] Suresh, L.,Schulz-Zander, J.,et al., "Towards Programmable Enterprise 
WLANs with Odin," First Workshop on Hot Topics in Software-Defined 
Networks (HotSDN '12), New York, NY, pp.115–120, 2012. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



24 
 

MANAR JAMMAL received her 
M.S. degree in electrical and 
electronics engineering in 2012 
from Lebanese University, Beirut, 
Lebanon in cooperation with 
University of Technology of 
Compiègne. She is currently 
working towards the Ph.D. degree 

in cloud computing and virtualization technology at 
Western Ontario University. Her research interests 
include cloud computing, virtualization, software 
defined network and virtual machine migrations. 
 

 

TARANPREET  SINGH 
received his Masters in 
engineering (M.Eng) degree in 
Communications and Data 
Networking from the University of 
Western Ontario, London, Canada 
in September 2013. He has 
worked as a Consultant with 

Accenture Technology  Services  and holds special 
interest in the Cisco Networking domain. His research 
interests include Software Defined     Networking,     
Network     Function Virtualization and Network 
Security. 
 

Abdallah Shami received the 
B.E. degree in Electrical and 
Computer Engineering from 
the Lebanese University, 
Beirut, Lebanon in 1997, and 
the Ph.D. Degree in Electrical 
Engineering from the 
Graduate School and 
University Center, City 

University of New York, New York, NY in September 
2002. In September 2002, he joined the Department of 
Electrical Engineering at Lakehead University, Thunder 
Bay, ON, Canada as an Assistant Professor. Since July 
2004, he has been with Western University, Canada 
where he is currently an Associate Professor in the 
Department of Electrical and Computer Engineering. His 
current research interests are in the area of network 
optimization, cloud computing, and wireless networks. 
Dr. Shami is an Editor for IEEE Communications 
Tutorials and Survey and has served on the editorial 
board of IEEE Communications Letters (2008-2013). 

Dr. Shami has chaired key symposia for IEEE 
GLOBECOM, IEEE ICC, IEEE ICNC, and ICCIT. Dr. 
Shami is a Senior Member of IEEE. 

 
 

Rasool Asal received his PhD 
degree in physics from the 
University of Leicester 
(Leicester, UK). He then 
moved to the University of 
Southampton to take up a post-
doctoral position within the 
Electronic and Computer 
Science Department. Dr. 

Rasool is a Chief Researcher at Etisalat BT Innovation 
Center (EBTIC) leading EBTIC research and innovation 
activities in the area of Cloud Computing. For the past 
fifteen years, he has been working with British 
Telecommunications Group at Adastral Park (Ipswich, 
U.K), designing and developing a considerable volume 
of high-performance enterprise applications, mostly in 
the area of telecommunications. Dr. Rasool is a speaker 
at many international conferences and events, most 
recently at the IEEE 8th International World Congress 
on Services (Cloud & Services 2012), Hawaii, USA. He 
has edited two books and published research papers in 
leading international conferences and journals. He is 
currently acting as Senior Guest Editor for Journal of 
Mobile Multimedia Special Issue on Cloud Computing 
Operation. His current interest focuses primarily on the 
Cloud Technologies, Cloud Security Architectures and 
the design of wide-area distributed cloud compliance 
enterprise systems that scale to millions of users. 
 
 

Yiming Li received a B.Eng. 
in Electrical Engineering from 
Western University, London, 
Ontario, Canada. Yiming is an 
Assistant Product Manager at 
StarTech.com. He is 
Responsible for product 
planning and product 
development. His research 

interests are in the areas of cloud computing, software 
defined networking and network virtualization. 

 
 


