
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312531599

Auto-Scaling in NFV Using Tacker

Conference Paper · January 2017

CITATIONS

0
READS

2,084

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Doctoral Thesis View project

SLA4Cloud View project

Emanuel Coutinho

Universidade Federal do Ceará

114 PUBLICATIONS   313 CITATIONS   

SEE PROFILE

Jose Souza

Universidade Federal do Ceará

160 PUBLICATIONS   830 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Emanuel Coutinho on 19 January 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/312531599_Auto-Scaling_in_NFV_Using_Tacker?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/312531599_Auto-Scaling_in_NFV_Using_Tacker?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Doctoral-Thesis-159?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SLA4Cloud?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emanuel_Coutinho?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emanuel_Coutinho?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Ceara?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emanuel_Coutinho?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Souza2?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Souza2?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Ceara?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Souza2?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emanuel_Coutinho?enrichId=rgreq-68988bffd46c6d185acae5aae2ee7e64-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzMTU5OTtBUzo0NTIyNzQ4NjM1MTM2MDJAMTQ4NDg0MjEzODU0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Auto-Scaling in NFV Using Tacker

William Sales14, Emanuel Coutinho24, and José Neuman de Souza134

1 Master and Doctorate in Computer Science (MDCC)
william@lia.ufc.br

2 Virtual University Institute (UFC-VIRTUAL)
emanuel@virtual.ufc.br

3 Department of Computer Science (DC)
neuman@ufc.br

4 Federal University of Ceará (UFC) – Fortaleza – Ceará – Brazil

Abstract

Nowadays, computer networks are composed of hardware appliances with specific functions, such

as firewalls, load balancers, web proxies and web servers. These appliances are called middleboxes, and

generally their implementation is a difficult task because of its proprietary nature. In these appliances,

Network Function are highly coupled to the underlying hardware, ensuring high performance and reli-

ability Network Function Virtualization (NFV) emerges as a proposal to ease the provision of services,

proposing a decoupling of the network functions from the underlying hardware, deploying them on com-

modity hardware (or off-the-shelf computing equipment), allowing Virtual Network Functions can be

deployed on commodity hardware directly, or through a Virtual Machine. One of the greatest benefits

obtained by NFV approach is scaling, which is the ability to dynamically extend or reduce resources

allocated to the VNF as needed and at run-time. In this work, we are interested in the advantages and

peculiarities of automatic scaling out/in, and for that we will use auto-scaling functionality available

in Tacker.

1 Introduction

Currently, computer networks are composed of hardware appliances with specific functions,
such as firewalls, load balancers, web proxies and web servers. Generally, the implementation
of these appliances is a difficult task because of its proprietary nature and the lack of specialized
professionals to integrate them and keep them. These appliances are also called middleboxes.

In these appliances, Network Function (NF) are highly coupled to the underlying hardware,
ensuring high performance and reliability, at the cost of a low flexibility of network infrastruc-
ture. Thus, even a simple change of location of a middlebox in the network becomes a difficult
and complex task.

Given this rigidity in adapting the network, the Network Function Virtualization (NFV)
emerges as a proposal to ease the provision of services. In general, NFV proposes a decoupling
of the network functions from the underlying hardware, deploying them on commodity hardware
1. In addition, the Virtual Network Function (VNF) can be deployed on commodity hardware
directly, or through a Virtual Machine (VM).

One of the greatest benefits obtained by NFV approach is Scaling, which is the ability
to dynamically extend or reduce resources allocated to the VNF as needed and at run-time.
Scaling may arise from the need of Scaling-out the VNF to handle added load or scaling-in to
to release unused resources.

In this context, Auto-scaling is ability of automatic scaling of VNFs and it provides better
resource utilization at a lower cost. Thus, it is possible quickly create new instances of a specific

1Commodity hardware are servers, storage and switches with standard specifications from the industry.



VNF that is overloaded, in order to split the workload. In the same way, it is possible to destroy
instances that are idle. The lower cost is due to the use of general purpose servers, which are
lower than the middleboxes.

In addition, there is a reduction in time to-market of new network services, since it is not
necessary to design and manufacture specific hardware. In addition, there is also a reduction in
Operation Expenditure (OPEX), since it is not necessary to have specialist professionals in the
various existing middleboxes, resulting in the same operational procedures for all appliances.
Also noteworthy is the economy resulting from the lower consumption of electricity, achieved
through the migration of NFVs and the shutdown of unused hardware.

Among the solutions that implement the NFV-MANO (Management and Orchestration)
specification, Tacker is the one that provides the most functionality contained in the specifica-
tion, so it will be used in this work [11]. However, few papers present a case study using the
auto-scaling feature.

Thus, the aim of this work is to try to use the auto-scaling functionality available in Tacker,
in order to verify the viability of the solution.

2 NFV and Auto-Scaling

2.1 NFV

Figure 1: NFV MANO architecture [5]

With the introduction of VNFs, NFV imposes the need to add new features of management
and orchestration to the model of operations, administration, maintenance and provisioning [10]
of existing communications networks [7]. To meet this demand, NFV proposes the NFV-MANO
framework (NFV Management and Orchestration), responsible for managing and orchestrating
VNFs in order to provide a network service that meets the requirements of users. NFV-MANO
is composed of the three function blocks: NFV Orchestrator (NFVO), VNF Manager (VNFM)
and Virtualized Infrastructure Manager (VIM) [5]. Figure 1 shows functional blocks and contact
points between them.



The NFVO has two main features: the Network Service Orchestration and Resources Or-
chestration. The first aims to coordinate groups of VNFs instances, resulting in network services
that perform more complex functions. Moreover, it performs: manage the lifecycle of Network
Services instances; instantiate and manage the VNFMs; maintenance of information about the
relationship between Network Services instances and VNFs that compose it; configure the con-
nections between VNFs; and dynamic management of configuration changes, such as resizing
the capacity of the Network Service. In turn, the Resources Orchestration has the objective to
orchestrate resource of NFV Infrastructure (NFVI) through multiple VIMs, as discussed later.

The VNFM, in turn, is responsible for managing the VNFs instances lifecycle, and can in-
stantiate, update, query, resize (scaling out/in and up/down) and destroy VNFs. Additionally,
it can perform automatic or assisted recovery of instances VNFs and collect information about
performance and failures of VNFs. Each VNFM can manage one or more VNFs. The require-
ments for deploying and operating behavior of each VNF is represented by a template called
VNF Descriptor (VNFD), which is stored in catalog of VNFs. The NFV-MANO architecture
uses VNFD to create instances of VNFs and to manage the lifecycles of them. The resources
of NFVI are assigned to a VNF based on the requirements stated in VNFD in addition to
considering specific requirements, restrictions and policies which may overlap the VNFD.

VNFM uses the Virtualization Deployment Unit (VDU) as a abstraction to describe the
deployment and operational behaviour of a subset of a VNF, or the entire VNF if it was not
componentized in subset. Thus, it is possible define the hardware and software requirements
necessary to deploy the VNF.

VIM is responsible for controlling and managing computing, storage and network resources,
and it is usually located in a single infrastructure domain. Generally, VIM interacts with a va-
riety of hypervisors and network controllers belonging to NFVI in order to achieve the function-
ality exposed by other functional blocks of NFV-MANO architecture. Others features include:
orchestrate, optimally, the allocation, update, release and recovery of NFVI resources; manage
the association (mapping) of virtualized resources to physical computing, storage and network
resources; manage, through repositories, information about the capabilities and features of hard-
ware (computing, storage and network) and software (hypervisors) resources of NFVI; manage
the ability of virtualized resources and forwarding information related to NFVI resource capac-
ity and usage reports; manage software images (add, delete, update, query, copy), as requested
by other functional blocks of the NFV-MANO architecture, for example, the NFVO; collect
and make available information on performance and failures of NFVI resources, either hard-
ware (computing, storage and network), software (hypervisors) or virtualized resources (VMs),
and provides analysis of the cause of NFVI performance issues; support the management of
graphs NFV Routing (creation, query, update and delete).

2.2 Auto-Scaling

Scaling can be initiated in a number of ways, or by a manager who needs to increase the capacity
of the VNF in advance due to a forecast of future demand growth or by a management system
that needs to maintain the requirements of the Level Agreement Service (SLA) [9].

Scaling can be classified in scaling up/down and scaling out/in. Scaling up/down, also called
Vertical Scaling, refers to the ability to add or remove allocated resources for existing computing
nodes, such as memory, CPU capacity or storage. In turn, scaling out/in, or Horizontal Scaling,
refers to the ability to scale by add/remove instances, such as VMs. Through scale out/in you
can instantiate new VNFs quickly, providing a way to create and deliver new services quickly.
In this work, we are interested in the advantages and peculiarities of scaling out/in.



Auto-scaling is a cloud computing service feature that automatically adds or removes com-
pute resources depending upon actual usage. Thus, Auto-scaling can automatically increase the
number of VNF instances during peak demand to maintain performance, and decrease capacity
during idle periods to reduce costs. It helps you ensure that you have the correct number of
VNF instances available to handle the load.

Also, in Cloud Computing, there is the concept of elasticity. According to the National In-
stitute of Standards and Technology (NIST) definition, resources can be elastically provisioned
and released, in some cases automatically, to scale rapidly outward and inward commensurate
with demand [6]. Thus, elasticity is becoming a growing need due to the dynamic nature of
different applications and diverse workloads. A detailed study about cloud elasticity were de-
scribed in [3], such as: definitions, metrics, benchmarks, elastic strategies, challenges and trends
in the construction of elastic solutions.

3 Literature Review

Several implementations of the NFV specification are available [4]. The following are the most
important open source NFV projects available:

Open Platform for NFV (OPNFV) [8] is an open source project hosted by The Linux Foun-
dation, that aims to help the evolution of NFV. The first version, released in June 2015 and
named OPNFV Arno, initially focused on building NFV Infrastructure (NFVI) and Virtual-
ized Infrastructure Management (VIM) by integrating projects such as OpenDaylight, ONOS,
OpenStack, Ceph Storage, KVM, Open vSwitch, DPDK and Linux. The most recent releases,
called Brahmaputra e Colorado, includes Management and Network Orchestration (MANO)
components primarily for application composition and management. From Colorado release,
OPNFV supports Tracker.

OpenMANO is a open source project released by Telefonica and aimed at implementing
ETSIs NFV MANO framework. It is composed of OpenVIM (a lightweight, reference im-
plementation of an NFV VIM), Openmano (an Manage and Orchestrator) and a graphical
user interface (GUI). OpenMANO can also work with OpenStack as VIM in its architecture.
OpenVIM is very similar to OpenStack, interacting with the compute nodes in the NFV Infras-
tructure and an OpenFlow controller to provide computing and networking capabilities and to
deploy virtual machines.

Open Source MANO (OSM) is a open source project hosted by ETSI to develop an NFV
Management and Orchestration (MANO) software stack aligned with ETSI NFV architecture,
and focused on helping industry accelerate the implementation of network virtualization. OSM
makes use of various projects, such as OpenMANO (acting as NFVM e VIM), RIFT.io (per-
forming the function of GUI and NFVO), OpenStack (for VIM) and Ubuntu JuJu (for VNF
Configuration and Abstraction). The only release available is called OSM Release ONE.

OPEN-O is an open source project hosted by the Linux Foundation that focused on en-
abling end-to-end service orchestration across network functions virtualization (NFV), software-
defined networking (SDN), and legacy networks. The current release is called OPEN-O Release
1.0.

4 Tacker Architecture

Tacker is an OpenStack project for NFV Management and Orchestration to deploy and operate
Virtual Network Functions (VNFs) and Network Services (NS) on an NFV Platform. It is based



Figure 2: Tacker architecture [1]

on ETSI MANO Architectural Framework [11].

Figure 2 presents Tacker Architecture, which provides a specific API for lifecycle manage-
ment of VNFs along with capabilities like VNF monitoring, auto-scaling and self-healing. The
NFV Catalog stores the VNF Descriptor (VNFD), Network Service Descriptor (NSD), For-
warding Graph Descriptor (VNFFGD). Tacker uses Openstack as Virtualized Infrastructure
Manager (VIM), specifically Nova, Neutron, Heat and Keystone services.

To define VNFD and NSD, Tacker uses Topology and Orchestration Specification for Cloud
Applications (TOSCA), a OASIS standard, that is a declarative language to describe, in a
standardized way, the application topology for a network or cloud environment that includes
all its components. TOSCA specifications to describe processes that create or modify web
services.

To provide a visual means to handle VNFs, the Tacker project has altered the Openstack
Horizont service, so that interactions with VNFs are performed easily through dashboard.
Figure 3 shown, on the left side, the menus added to Openstack, ”VNF Management” and
”NFV Orchestration”.

Figure 3: Openstack dashboard



5 Experiment Environment

The purpose of the experiment is to show the auto-scaling functionality of VNFs using Tacker.
For this, VNFs will be deployed and subjected to a high processing load, so that Tacker auto-
matically creates new instances to distribute the workload.

For the experiment, a scaling policy was defined to scale out the number of VNF instances
when CPU or RAM usage reaches 70% of total availability from VM. The initial number of
instances is 2, and can vary up to the maximum limit of 3 and minimum limit of 1. The
variables CPU processing load and use of RAM Memory were easily retrieved by the Tacker
Monitoring Framework in conjunction with the Ceilometer. The environment used to carry
out the experiment consists of one Server HP ProLiant ML350p Gen8 (Intel Xeon E5-2620
Processor and 8 GB RAM Memory), a workstation with an i5 Intel processor (4 GB RAM
Memory), interconnected by an 8-Port Gigabit Ethernet Mini-Switch, as shown in the Figure
4.

Figure 4: Experiment environment

The server hosts Openstack and Tacker and performs the functions of VIM, NFV Manage-
ment and Orchestration, while the workstation serves as a Compute Node that hosts the VNFs.
The installation of Openstack and Tracker on the server followed the steps described on the
Tacker project website 2. In the workstation the Openstack nova-compute service was installed,
based on the instructions on the Openstack website 3.

Each NFV instance consists of only one VDU, in order to simplify the environment, and it
has a Cirros operating system, that is a minimal Linux distribution that was designed for use
as a test image on clouds such as OpenStack Compute. Each VDU is composed of 1 CPU, 1
HD of 1 GB and 512 MB of RAM Memory.

To perform the experiment, an HTTP server was enabled on the VNFs and the Load
Balancing service of the Neutron Openstack (LBaaS) was used to stress the VNFs.

6 Experiments Results

As shown in Table 1, at the beginning of the experiment, the use of the CPU of Instance 1 was
at 10% and Instance 2 was at 16%. After the stress tests, CPU usage of Instance 2 reached
70%, triggering alarm triggers for the Tacker Monitoring Framework, which, in turn, initiated
the instantiation of a new VNF. Figure 5 shows the exact moment the NFV was performing
the scaling out, represented by the PENDING SCALE OUT state.

2Tacker installation - https://wiki.openstack.org/wiki/Tacker/Installation
3Compute Node Installation - http://docs.openstack.org/juno/install-guide/install/apt/content/ch -

nova.html



Table 1: CPU Usage in Instance 1 (I1), Instance 2 (I2) and Instance 3 (I3)
#VNF % CPU I1 % CPU I2 % CPU I3

Beginning of the experiment 2 10% 16% -
After stress and just before Scale out 2 64% 70% -
After Scale Out 3 46% 52% 44%

Figure 5: PENDING SCALE OUT status after triggering alarm

After the instantiation of the new VNF, the load can be distributed between the 3 instances,
which will cause a decrease in the CPU usage of instance 1 and 2. Figure 6 shows the newly
created instance, with IP address 192.168.120.3 and ”Time since created” equal to zero minutes.

Figure 6: Three NFV instances



7 Conclusion

This work presented an experiment with Tacker, an OpenStack solution for NFV. In it, it was
possible to check the running auto-scaling in order to achieve automatic scaling in/out. In this
way, VNFs with HTTP proxy functions were deployed and subjected to a high processing load,
so that Tacker automatically creates new instances to distribute the workload.

For the scaling in/out policy only the processing load variable was used. However, in future
work other variables, such as the use of RAM, could be considered in the policy definition.
Besides that, we intend to design larger experiments, with more VNFs, and collect metrics to
improve performance. A strategy that can be used is to calculate how much the environment
is elastic in a computational cloud environment, by means of specific elastic metrics [2].

References

[1] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. nf.io: A file system abstraction for nfv
orchestration. pages 135–141, Nov 2015.

[2] Emanuel F. Coutinho, Paulo A. L. Rego, Danielo G. Gomes, and Jos N. de Souza. Physics and
microeconomics-based metrics for evaluating cloud computing elasticity. Journal of Network and
Computer Applications, 63:159 – 172, 2016.

[3] Emanuel Ferreira Coutinho, Flávio Rubens de Carvalho Sousa, Paulo Antonio Leal Rego,
Danielo Gonćalves Gomes, and José Neuman de Souza. Elasticity in cloud computing: a sur-
vey. annals of telecommunications - annales des télécommunications, 70(7-8):289–309, 2015.

[4] ETSI. Etsi industry specification group (isg) nfv, etsi gs nfv 001 v1.1.1: Network function
virtualization. use cases. http://www.etsi.org/deliver/etsi gs/nfv/001 099/001/01.01.01 60/gs -
nfv001v010101p.pdf, 2013. Online; acessado em novembro-2016.

[5] ETSI. Etsi industry specification group (isg); network functions virtualisation (nfv); management
and orchestration. http://www.etsi.org/deliver/etsi gs/NFV-MAN/001 099/001/01.01.01 60/gs -
nfv-man001v010101p.pdf, 2014. Online; acessado em novembro-2016.

[6] Peter Mell and Tim Grance. The nist definition of cloud computing. National Institute of Standards
and Technology, 53(6):50, 2009.

[7] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network function
virtualization: State-of-the-art and research challenges. Communications Surveys Tutorials, IEEE,
18(1):236–262, Firstquarter 2016.

[8] OPNFV. Open platform for nfv (opnfv). https://www.opnfv.org/about, November 2016. accessed
November, 2016).

[9] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. Split/merge: System
support for elastic execution in virtual middleboxes. nsdi’13, pages 227–240, Berkeley, CA, USA,
2013. USENIX Association.

[10] Brijendra Singh. DATA COMMUNICATIONS AND COMPUTER NETWORKS Fourth Edition.
PHI Learning, 2014.

[11] Tacker. Tacker. http://docs.openstack.org/developer/tacker/, November 2016. accessed Novem-
ber, 2016).

View publication statsView publication stats

https://www.researchgate.net/publication/312531599

	Introduction
	NFV and Auto-Scaling
	NFV
	Auto-Scaling

	Literature Review
	Tacker Architecture
	Experiment Environment
	Experiments Results
	Conclusion

