
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Management of API Gateway Based on Micro-service Architecture
To cite this article: J T Zhao et al 2018 J. Phys.: Conf. Ser. 1087 032032

View the article online for updates and enhancements.

This content was downloaded from IP address 140.123.103.170 on 22/09/2020 at 06:57

https://doi.org/10.1088/1742-6596/1087/3/032032
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv_lCIK77CBK0_sTFPplNPV02PutEW5VJ7vg7ehRZLHZue5_UGlfA5kvVsGyPO8dmJM1ifQxLHjr-04CrlJQvedirpI-8oNSsdkMN6wy_QP9-w7B3mtVYIMxXEeMOPQQEvOBRzXW7ppfxs9FHBbyhdNiwMktM5Lv9Ol7xD8P69SBCE2B0_dPH3XUxarSZMZ4yl0AUtT-nPDhDCKv0VZfM81d9CyPUnWWyXmB1pMsb1ECeQe7akF&sig=Cg0ArKJSzPCDd78XkiyM&adurl=http://iopscience.org/books

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

Management of API Gateway Based on Micro-service
Architecture

J T ZHAO1 S Y JING1 and L Z Jiang1
1 Institute of Network and Information Systems, School of Control and Computer
Engineering, North China Electric Power University, Beijing, 102206, PR China
E-mail: Jingshuyang@eplian.com

Abstract. Micro-services are activities that run in your own programs and communicate with
HTTP APIS through lightweight devices. Under the Micro-service architecture, the API
gateway is an important component of the overall architecture. It abstracts the common
functions that are needed in the Micro-services. As the only entry for a Micro-service, the API
gateway encapsulates the specific internal implementation and interface of the system. Based
on the analysis and comparison of the traditional framework and the Micro-service framework,
this paper mainly analyzes the realization of the functions：load balancing, automatic service
blowing, and Gray release, and gives the implement scheme of the key technology of the API
gateway under the Micro-service architecture. The scheme discusses the case study of the
technology selection and application architecture under micro service. And it also provides a
new solution for the difficulties in manage API gateway under micro service by giving a
detailed design for the authentication of the API gateway ,reverse proxy function and flow
control function. By using API gateway, the problem of how a caller can call an independent
service can be solved, thus the development efficiency can be greatly improved.

1. Introduction
With the rapid development of Internet technology, service-oriented architecture (SOA) has evolved in
many ways. The popularity of the microservices architecture has replaced some of the SOA. One of
the advantages of microservices over traditional monolithic architectures is that the separation of
services brings isolation of updates, deployments, and management, allowing some individual services
to innovate and experiment. This supports the continuous upgrading of the user experience and
provides the support of the technical architecture for the process of digital transformation of the
enterprise. The API gateway is a very common mode in the microservice architecture. Using the API
Gateway can solve the problem of how callers call independent microservices. In order to manage the
complex and numerous API well, we ought to use the API gateway to manage the service API in the
construction of the microservice system. To put it simply, API Gateway is a special server, which is
the only entrance entire micro-services. API gateway encapsulates the internal aspect of the system
and the specific implementation of the interface, on the other hand, it has functions such as permission
verification, load balancing, caching, and monitoring.

This article will analyze the API management from the following aspects : the background
advantages of the API gateway under the microservice architecture, the analysis of its functional
technical points, and the related technical solutions.

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

2. Microservices API Gateway Background and Benefits
The granularity of APIs provided by microservices is usually different from that of clients.
Microservices generally provide fine-grained APIs, which means that clients need to interact with
multiple services. Different clients require different data, and different types of clients have different
network performance. The division of services may change over time, so it is necessary to hide details
from clients.

API Gateway is an API-oriented, serially centralized strong management and control service that
appears on the system boundary. Prior to the popularity of the microservices concept, the API gateway
entity was born. The main application scenario at this time is OpenAPI, which is an open platform for
external partners.

When the concept of microservices became popular, the API gateway seemed to be the standard
component for integration at the upper application layer. Using the API Gateway service to micro
service has many advantages. It can make the client not affected by the location of the service instance
and undetectable how the application is split into multiple microservices. It provides the optimal API
for each client to reduce the request. One of the benefits of API Gateway is to encapsulate the internal
structure of the application. Compared to calling the specified service, the client interacts with the
gateway more simply. API Gateway provides each client with a specific API, which reduces the
number of client-server communications and simplifies client code.

3. Analysis of Functional Elements of Gateway Mode under Micro-services
In the scenario of using micro-service architecture, when the client calls the background micro-
services, you need to perform login authentication, identity authentication authority, traffic control,
load balancing, call log file, flow control and reverse proxy, health checks and other operations to call
every microservice. For service managers, they should have functions such as service permissions,
system monitoring, service flow control configuration, API URL routing rules configuration, and call
setup. Therefore, the operation needs to be handed over to a high-performance intermediate layer for
processing, so as to reduce the coupling between the systems and make the micro-service more
focused on the business logic processing and reduce the overall system response time.

As shown in the figure1, requests from various terminals reach the gateway after one-layer load
balancing. After the gateway performs unified login authentication, permission authentication, flow
control, load balancing, and health check, the request is forwarded to the background microservices.

Figure 1. The client calls the micro-

service process.
 Figure 2. Load balancing process.

3.1. Implement load balancing
In actual deployment, when the application system is facing a large number of visits and the load is
too high, the number of services is usually increased to scale out horizontally, and the cluster is used to
improve the processing capability of the system. At this point, multiple services share the pressure of
the system through a load algorithm, which is called load balancing. Using the API gateway, load
balancing can be easily implemented. Service discovery is used to know the addresses and locations of
all services. Load balancing algorithms are implemented in the API gateway to achieve load balancing.

3

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

3.2. Implement service blowing
In actual production, some services may fail for some reason. If you do not take some measures, it will
cause the entire system to "avalanche." Or the number of service visits is will be limited due to the
overall system load. Service blowing and service degradation are the main ways to solve the above
problems. API Gateway can help to achieve these functions better. For the limitation of the number of
calls for service ,when a service reach the limit, the API gateway will automatically stop the service
from sending a request to the upstream, and perform service downgrade like the error page returned by
the client or a unified response. For services that require a temporary failure, the API Gateway can
automatically open the circuit breaker for the corresponding service and perform service blowing to
prevent the entire system from "avalanche."

Flow control

Authenti-
cation

Load
balancing

Flow
control

Call
logs

URL
rewriting

Reverse
proxy

Lua script

Data layer

API Gateway Management
Technology

API
configura-

tion

Authority
management

Flow Control
Management

System
monitoring Statistics

Rewrite
configura-

tion

Nginx access API Gateway Management Interface

Redis cluster MongoDB
cluster

MYSQL
Cluster

Figure 3. Gray release process diagram. Figure 4. Architecture Diagram of

Platformization Service API Gateway.

4. Micro-service gateway mode technology solution

4.1. Technical Selection
There are mainly five types of API Gateway WebApp, Mobile App, Partner Open API, Partner
External API, IoT Smart Device. For the first three categories or the top four API gateways, except for
guaranteeing the exchange of data, it is also necessary to implement identity authentication for access
clients, anti-message playback and data tamper resistance, service authentication service calls,
response data desensitization, traffic and concurrency control, and even API-based Called metering or
billing.

The API gateway serves as the entrance of the background micro service request, and it must be
required to have features such as high performance and expansibility. Therefore, it is preferred that the
Ngnix-based lua language is used as an extended API gateway technology.

4.2. Application architecture
The design of the API gateway includes three elements: the API gateway itself, the API gateway client,
and the supporting self-service platform. An important role played by the API gateway is that all
clients and consumers access the microservices through a unified gateway and handle all non-business
functions at the gateway layer. Typically, the gateway also provides REST/HTTP access APIs. The
server registers and manages services through the API Gateway.

Taking the platform service API gateway as an example, it can be divided into two parts: the
service request agent subsystem and the gateway management subsystem. At the same time, it
interacts with the platform service authentication center to handle service request authentication. On
the other hand, the service instance information and interface information are loaded from the platform
service registration center. The architecture of the platform service API gateway is shown in the figure.

4.2.1. Platform Service API Gateway Request Broker Subsystem. The platform-based gateway
management subsystem encapsulates the main business logic into microservices and deploys and
maintenance independently. The management interface of the API gateway is integrated into the

4

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

integrated management platform for management, combined with Spring Web, to implement API
management, rights management, flow control, system monitoring and other functions through a
three-tier architecture of Service, Internal Service, and DAO. That is, the service registration and
discovery center can synchronize the service information and interface information of the micro
service in real time, and also support the management personnel to manually add the API interface.
The architecture of platform service API gateway subsystem business logic and portal interface
separation is also the architecture approach of microservices and services combined in a microservice
scenario. A business portal freely combines multiple microservices to implement certain business
functions, achieves the decoupling of interfaces and complex business logic, and ensures the
reasonable size and scope of a single project. This is also a difference between the microservice
architecture approach and the monolithic architecture.

4.3. Detailed design
For API gateway authentication, monitoring, load balancing, caching, request slicing and management,
static response processing, etc. It is not difficult for API gateway technology to access. However, for
the best practice, the design of a key function Implementation is important. For example, the gateway
authentication mode selection, rights verification function, flow control function, URL rewriting
function, service API gateway request proxy forwarding, API gateway background management
system, configuration service interface user level flow control function specific implementation.

 4.3.1 API gateway authentication. Currently in microservices, the protection API needs to be invoked
only by customers who have agreed to authorize. At present, most of the methods used are of the three
types: AppKeys, OAuth2, and OAuth2+JWT. These authentication methods have their own
characteristics and advantages.

a. AppKeys. There are many public cloud API gateways and data open platforms currently that use
AppKeys Auth authentication, such as Alibaba API gateways and aggregation data. This
authentication mode is issued by the API gateway with a key, or appkey+appsecret+ some kind of
complicated encryption algorithm to generate AppKey. The caller directly calls the API after getting
the key. netWhen receiving the API request, the API gateway first checks the validity of the key,
including whether the key is invalid, whether the current calling API is subscribed, and so on. If the
verification is successful, the API gateway requests the upstream service and returns the result. Here,
the upstream service no longer checks the request and returns the result directly. AppKeys
authentication mode is more suitable for Open Service scenarios, which does not involve user
information, rights information.

Figure 5. AppKeys authentication process. Figure 6. OAUTH / OAuth2 + JWT

agreement certification .

b. OAuth2(Open Authorization). The OAUTH protocol provides a secure, open and simple standard
for the authorization of user resources, but OAUTH's authorization will not allow third parties to touch

5

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

the user's account information (such as user name and password). In OAuth2, there are several roles:
Resource Owner, Client, Authorization Server, and Resource Sever. The figure above is a simple
OAUh2 process to illustrate the relationship between each role. Eventually, the app gets Rory's
personal information.

c. OAuth2+JWT. The OAuth2 + JWT process is exactly the same as OAuth2. OAuth2 will eventually
issue an Access Token to the caller. OAuth2+JWT actually replaces the Access Token with the JWT.
The benefit of doing so is simply to reduce the number of queries to the DB at the time of the Token
check.After the addition of the API Gateway, each of our services may require user information to
determine if the current interface or feature is available to the current user. We can implement it by
putting unified authentication on the API gateway. The API gateway performs unified interception and
authentication. In combination with the authentication methods described above, the OAuth2 protocol
can carry the characteristics of user information, so more OAuth2 authentication is used the way.

4.3.2. API Gateway Reverse Proxy Function. The API gateway processing request includes a series of
main processes, such as receiving an API request, performing parameter verification, verifying the
validity of the AccessToken, acquiring the APP information, and obtaining the API information
according to the URL to perform flow control verification, request packet encapsulation, URL
rewriting, and reverse proxy request, configuration request cache, storage call log, etc. The specific
process flow is described as follows:

a. AccessToken validation. The generation of the AccessToken is based on the Oauth2.0 authorization
protocol. First, it is verified whether the format of the AccessToken meets the requirements. An
AccessToken conforming to the format requirement can be split into the application ID, the generation
time, and the authentication signature. If the verification generation time is more than half an hour
from the current time, the AccessToken expires. Then it obtains the application information from
MongoDB through the application ID. And it compares the authentication signature by using the same
encryption method to encrypt the AccessKey and the Security of the application information. If they
are different, the AccessToken is illegal and cannot be called again.

b. Information loading. Through the verification of the AccessToken, the application information has
been loaded, including the application-associated user information. According to the URL requested
by the request, the API corresponding to the URL is loaded from the Nginx local cache. If there is no
URL information in the local cache, the API information is queried from MongoDB. If it is still not,
then the URL is an illegal request and is directly rejected. If the API information is queried, it includes
the rights required for the URL, frequency control, IP limit, URL rewriting, and instance address.

This information is cached in the Nginx local cache. The Nginx cache uses server memory directly
and reads very quickly, which can greatly reduce the time spent reading data remotely in high
concurrency situations. However, the problem is that the local cache of each machine in the cluster
cannot be cleared dynamically. Therefore, the API configuration needs to wait for a valid time of 20
minutes.

c. Flow control. After obtaining the information of the application information and the API, according
to the requirements of the API, it is judged whether the application includes the right required for
calling the API.If there is no right, the information of the insufficient right is returned. If the privilege
verification passes, according to the configuration of the API, it is judged whether the call is restricted
in the IP address.

If the IP restriction list is returned, an illegal IP address error message is returned. After the IP
restriction is completed, it is determined that the API needs to perform application-level, user-level,
and cluster-level traffic control. Flow control uses Redis's incr operation to determine if the number of

6

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

URLs in a unified second exceeds the frequency control threshold. If the threshold is exceeded, an
error message that requests too frequently is returned.

Application-level traffic control uses URLs and application IDs as Redis stored keys, user-level
controls use URLs and user IDs as Redis stored keys, and cluster-level flow holes use URLs and
cluster instance names as Redis stored keys.

d. Request packaging. In the process of requesting reverse proxy, the background service may need to
adjust the parameters. For example, you need to increase the default parameters, and add the
authentication information, application information, and other data after requesting HTTP. In the
process of requesting packaging, application information and verification information can be added to
the HTTP Header according to configuration requirements.

e. URL rewriting. First, before the reverse proxy is performed, an instance is obtained by polling based
on the instance information of the API. In addition, according to the rewriting rules of the URL, the
original URL is converted into the URL of the actual internal service, and the call address of the
reverse proxy is generated in conjunction with polling the selected instance address.

f. Reverse proxy. The reverse proxy uses Lua's Socket TCP library to establish a TCP connection with
the remote service, encapsulate the HTTP packet according to the HTTP protocol, and send the HTTP
packet over this TCP connection. In this process, the connection time and timeout time of the request
can be controlled. In this TCP connection, the returned result is again encapsulated into JSON format
and returned to the caller.

g. Result Cache. According to the API configuration information, you can configure whether the
request result is cached and cached time . The request cache can avoid frequent establishment of
connections with the same request, reduce latency, and improve service performance. The cache of
API calls results in using the Redis cluster cache.

h. Store call log. In order to monitor the API gateway system, statistic API usage data, and analyze the
performance issues of the API gateway, each application information, API information, time
consumed by various processes, request parameters, and return parameters will be recorded through
the log. Next, the big data platform is collected by the log collection system in real time, and logs are
split and stored. You can then use Big Data Analytics Statistics to perform statistics and exception
monitoring.

4.3.3. API gateway flow control configuration. This section describes the process of configuring the
application of QPS (queries per second) traffic control services in a case. First, the service requester
performs service processing, then encapsulates the request parameters, and uses the service client to
invoke the service. After the microservice interface receives the call request, it first verifies the
parameters according to the interface's business process, then stores the data in the database, and
finally returns the processing result.

a. Service client initiates call. After data is saved at the service end, the user firstly processes the
service according to the service, performing data access in its own service system, or checking
whether the information entered by the user is legal. Then he encapsulates the request parameters and
request management of the application flow control micro services through the platform service client.

b. Service processing on the server. After the flow control management micro service receives the
request call, it first verifies whether the requested parameter is valid. If it is not legal, it returns an
error message. Then the microservice performs business processing. For the operation of configuring
the QPS value, first it checks whether the application exists. If the application does not exist, the

7

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

configuration cannot be performed. If the application exists, then it determines whether the QPS
configuration exists. If the QPS configuration exists,it will perform data update. If it does not exist, the
application QPS configuration is re-created.

c. Cross-cluster synchronization of data. For the application flow control configuration of the API
gateway, the data is stored in the Mysql database cluster, but since the API gateway requests the proxy
subsystem and reads the API configuration data directly from MongoDB, the value of the change in
the Mysql database needs to be updated to the three MongoDB database clusters in Beijing,Nanjing
and Shanghai. The main reason to use these three MongoDB clusters is that the API Gateway Request
Broker subsystem is a cluster of three different regions. To reduce cross-region data access, three
MongoDB clusters are configured. After updating the data of the APIs on the three clusters, clearly
understand the QPS configuration of the API in Redis. If an update fails during this process, all
operations on this database are rolled back.

5. conclusion
In the microservices architecture, each microservice exposes a set of fine-grained service providers.
API gateways play an essential role in the microservice architecture. The API gateway ,serving as the
gateway to each request initiated by the application, provides public functions such as load balancing,
service blowing, and Gray release. It also integrates various micro-services and shields the complexity
and diversity of the system, clearly simplifies the implementations of the communication between
client and microservice applications.

Through the authentication method in the microservice architecture, the advantages and
disadvantages of the microservice architecture and the challenges faced in implementing the
microservice architecture are analyzed and summarized.

This paper analyzes the authentication scheme combined with the API gateway from the
perspective of deployment, explores the key functional technology design of high-performance API
gateways, uses API gateways, organizes and manages open microservice interfaces, and neither
disrupts the micro-services architecture nor ensures the security of microservices. The main business
difficulty of implementing an API gateway lies in its ability to handle high concurrent requests and
performance requirements.

BY using the OpenResty platform, rights verification, flow control, URL rewriting, reverse proxy
and other functions based on Ngnix and Lua languages, the high performance requirement of API
gateway can be satisfied. However, there are still some issues that need to be continuously updated to
meet the needs of continuous updating. Continuous optimization, better management of the API
gateway can make the development more concise and efficient, and can achieve high-quality
interaction with micro services.

References
[1] Tan Yiming. Design and Implementation of Platform Service Framework Based on Microservice

Architecture [D]. Beijing Jiaotong University , 2017.
[2] Balalaie，Armin, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices architecture enables

DevOps: migration to a cloud-native architecture. IEEE Software, 2016. 33(3) 42-52.
[3] Hane,Oskar. Build your own PaaS with Docker. Packt Publishing Ltd , 2015.
[4] Zuo W, BENHANKAT A, AMGHAR Y. Change-certric model for Web service evolution[C].

Proceedings of International Conference on Web Services. Washington,D.C. ,USA: IEEE,
2014:712-713.

[5] Newman S. Building Microservices[M]. O’Reilly Media,Inc , 2015.
[6] Gao Shihao. Correct posture for API management—API Gateway [DB/OL]. https://mp.weixin.

qq.com/s/Q9ZgUQIlGcBS5WPW6vwPhg, 2018.
[7] Micro Service API Gateway [DB/OL]. https://blog.csdn.net/zdp072/article/details/76473383, 2017.

8

1234567890 ‘’“”

First International Conference on Advanced Algorithms and Control Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1087 (2018) 032032 doi :10.1088/1742-6596/1087/3/032032

[8] He Zhuofan, Macro. Microservices and API Gateway (I): Why do I need an API gateway?
[DB/OL]. https://mp.weixin.qq.com/s/XTzRr0eR6ybpNFGJ57cVkA , 2017.

