
Latency and availability driven VNF placement in a
MEC-NFV environment

Louiza Yala∗, Pantelis A. Frangoudis‡, and Adlen Ksentini‡
∗IRISA/University of Rennes 1, France
‡EURECOM, Sophia Antipolis, France

Email: ∗louiza.yala@irisa.fr, ‡name.surname@eurecom.fr

Abstract—Multi-access Edge Computing (MEC) is gaining
momentum as it is considered as one of the enablers of 5G
ultra-Reliable Low-Latency Communications (uRLLC) services.
MEC deploys computation resources close to the end user,
enabling to reduce drastically the end-to-end latency. ETSI has
recently leveraged the MEC architecture to run all MEC entities,
including MEC applications, as Virtual Network Functions (VNF)
in a Network Functions Virtualization (NFV) environment. This
evolution allows taking advantage of the mature architecture and
the enabling tools of NFV, including the potential to apply a
variety of service-tailored function placement algorithms. How-
ever, the latter need to be carefully designed in case of MEC
applications such as uRLLC, where service access latency is
critical. In this paper, we propose a novel placement scheme
applicable to a MEC in NFV environment. In particular, we
propose a formulation of the problem of VNF placement tai-
lored to uRLLC as an optimization problem of two conflicting
objectives, namely minimizing access latency and maximizing
service availability. To deal with the complexity of the problem,
we propose a Genetic Algorithm to solve it, which we compare
with a CPLEX implementation of our model. Our numerical
results show that our heuristic algorithm runs efficiently and
produces solutions that approximate well the optimal, reducing
latency and providing a highly-available service.

I. INTRODUCTION

Ultra-Reliable Low-Latency Communications (uRLLC) ser-
vices, such as connected car, industry 4.0 and critical IoT,
are expected to be deployed using the upcoming 5G systems.
uRLLC services require very low latency access between
the remote server and the clients, while running in a highly
reliable environment to guarantee service continuity. While
5G introduces novel mechanisms to ensure low latency, via
MAC layer scheduling and network slicing [1], it requires
running the servers belonging to uRLLC at the cloud edge to
maintain a low end-to-end latency. Indeed, Edge Computing
allows the deployment of applications close to end users to
reduce access latency, as compared to the central cloud access.
Two technologies emerged to enable the edge cloud, FoG
and Mobile (or Multi-access) Edge Computing (MEC). The
former is expected to run at the edge router, while the latter,
supported by the European Telecommunications Standards
Institute (ETSI) as well as network operators, is expected to
run close to 4G/5G base stations (i.e., eNodeBs). Several ETSI

This work has been partially supported by the European Union’s H2020
5G-Transformer Project (grant no. 761536)

documents have been issued [2], [3] to define a reference
architecture and functional blocks to enable running MEC
applications at the edge. These documents (i) define interfaces
to interconnect MEC applications with the mobile network
data plane to interact with the user data, (ii) specify interfaces
to run MEC applications within a virtualization platform,
and (iii) provide MEC services to leverage the mobile op-
erator, by exposing low-level Radio Access Network (RAN)
information to third-party application developers, allowing the
development of context-aware services. MEC is more mature
and ready to be deployed compared to FoG, where the first
release of the architecture has been recently issued,1 and
mainly targets IoT services. Moreover, ETSI has recently
started working on updating the MEC reference architecture
to run MEC entities in a Network Functions Virtualization
(NFV) environment [4], to take advantage of the latters
mature deployment environment in terms of implementation
and enabling tools, such as the Open Source Mano (OSM)2

and OpenBaton3 orchestration suites. The NFV orchestration
process, known as the NFV Orchestrator (NFVO), is in charge
of the automation of Network Service (NS) deployment over
the virtualized infrastructure, which mainly consists in the
instantiation, placement, and life-cycle management of VNFs
composing a NS. By integrating MEC in NFV, ETSI considers
MEC applications as classical VNFs, hence using the same
orchestration and management process at a centralized NFVO.
It is important to mention that MEC applications need to be
hosted at the edge aiming at guaranteeing low latency access to
the service. However, most of the used placement algorithms
in NFV [5] aim to reduce deployment costs, increase the
users Quality of Service (QoS), ensure service availability, etc.,
ignoring MEC applications constraints in terms of low latency.
This may MEC application instances to be run at central
clouds, as the NFVO and its related placement algorithms do
not differentiate between MEC applications and other VNFs.

In this paper, we fill this gap by proposing a placement
algorithm tailored to uRLLC services in the context of MEC in
NFV. First, the proposed scheme classifies all cloud resources
(central and edge cloud) according to their access latency

1https://www.openfogconsortium.org/ra/
2https://osm.etsi.org
3https://openbaton.github.io/

978-1-5386-4727-1/18/$31.00 ©2018 IEEE
Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

to the user data plane, which avoids the need for additional
information to differentiate between edge and central cloud
resources, thus being in compliance with the MEC in NFV
concept. Then, the placement algorithm is formulated as an
optimization problem, where the objectives are to minimize
latency and to maximize service availability (reliability); these
correspond to the main deployment criteria for uRLLC ser-
vices.

This paper is organized as follows. In Section II we present
related work on VNF placement in different environments.
We propose a formulation of the VNF placement problem for
uRLLC in Section III. We provide solutions to this problem
by proposing a suitable Genetic Algorithm (Section IV), but
also by using the CPLEX solver as a benchmark. Our results
are shown in Section V, before we conclude in Section VI.

II. RELATED WORK

The VNF placement problem in federated clouds has re-
cently received significant attention. These clouds involve dis-
tributed data centers (DCs) connected into a common resource
pool to deliver different cloud services.

The VNF placement problem is similar to the Virtual
Machine (VM) placement problem, as VNFs are composed
of virtual instances (VMs or containers) that execute network
functions. A suitable VNF placement is mostly motivated by
maximizing resource utilization or overall performance, while
minimizing cost in terms of energy consumption, network traf-
fic or penalties associated with SLA violations under various
constraints [6], [7]. Although these metrics are well suited for
NFV, putting MEC in the picture may require other metrics to
be considered, such as latency. Indeed, one of the advantages
of placing VNFs at the edge is the proximity to end-users,
which leads to a low-latency service deployment as reported
in [8]. Specifically the authors analyze the MEC reference
architecture and deployment scenarios, which offer multi-
tenancy support for application developers, content providers,
and third parties. They highlight the important changes to-
wards the vision of 5G where MEC is known as one of the key
emerging technologies, thanks to its significant contribution to
low latency assurance. Therefore, placement algorithms should
be updated to integrate latency as a criterion, in addition to
other metrics.

Only few works have addressed the problem of VNF place-
ment in a mixed environment that includes edge and central
clouds [9], [10]. Generally, VNFs are placed either in physical
machines within central cloud infrastructures only [11], or in
MEC servers [12], [13]. Other works [14], [15] investigate
the placement in the context of a hybrid federated cloud,
using a combination of different cloud infrastructures, without
however involving the edge. In this context, the authors in [10]
also propose a VNF placement solution that captures the trade-
off between cost efficiency and Quality of Experience (QoE)
in a multi-cloud environment.

Similarly to our work, some recent approaches [9], [16]
outstrip the common cost and resource optimization by intro-
ducing more specific VNF placement and provisioning opti-

mization strategies over edge and central cloud infrastructures.
Jemaa et al. [9] take into account QoS requirements such
as minimum bandwidth and maximum end-to-end latency.
In particular, their objective is to minimize the maximum
utilization of the edge cloud by deploying more VNFs in the
traditional cloud.

In our prior work [5], we studied the problem of jointly
allocating compute resources to virtual instances and their
placement on a traditional cloud infrastructure for the provi-
sion of CDN-as-a-Service. Our focus was on simultaneously
addressing the conflicting requirements for improving service
availability and reducing management cost. This paper is
similar in spirit but is put in a different context. In particular,
as in our prior work, we provide a multi-objective optimiza-
tion problem formulation and apply the service availability
model we introduced in [5]. However, from a system model
perspective, this paper has the following distinct differences:
(i) physical machines are not considered identical regarding
their reliability and the cost of deploying VMs on top of them,
thus differentiating between edge and central cloud hosts, (ii)
latency minimization is one of the objectives, (iii) the CPU
resource requirements per VNF instance to deploy are part of
the problem input.

III. PROBLEM FORMULATION

We assume that an operator manages a set of data centers
(DCs), which can either be installed at the network edge,
and therefore close to end-users, or in the traditional central
cloud. The uRLLC service is composed by a number of VNFs,
which are in turn composed of a set of VMs (a VNF could be
composed of one or more VMs to guarantee scalability). The
operator aims to derive a suitable placement of those virtual
instances (VMs) in DCs, where each DC has a set of physical
machines (PMs) where VMs can be launched according to the
demand. The objective is to find an appropriate placement of
the n VM composing a service instance on a subset of the m
available PMs.4 This is translated in our system as a binary
assignment matrix X = (xij) with i ∈ [1, n] and j ∈ [1,m],
where xij is equal to 1 if VMi is hosted at PMj , and 0
otherwise. The number of VMs to instantiate, as well as the
CPU requirements of each VM, are part of the problem input.
The calculation of the optimal assignment should minimize the
average access latency of the service deployment, consider the
CPU capacities of the underlying physical hosts, not exceed a
budget, and respect a service availability constraint. We recall
that we target a uRLLC service, which requires both low-
latency access and reliability.

A. Latency model

We consider two types of hosts (PMs): ones which are
located at centralized clouds/NFV infrastructures, and ones at
MEC DCs. Hosts are grouped by DC and all hosts belonging
to the same DC are assumed to share the same access latency
value. Note that by characterizing DCs/hosts by latency, we do

4In the rest of the paper, unless otherwise noted, the terms host, PM, and
(physical) server are used interchangeably.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

not need to explicitly differentiate between MEC and central
cloud PMs; for a delay-minimizing algorithm, only the latency
property is relevant.

We define access latency as the latency for users to access
the uRLLC service. D = [d1 d2 . . . dm]

T is a vector where
dj is the latency characterizing the j−th PM and m is the total
number of available PMs across all DCs. A specific assignment
X is characterized by a n-dimension latency vector D′ =
[d′1 d′2 . . . d′n]

T , whose value depends on the PMs that are
utilized to host the n VMs composing the service, and which
we formulate as

D′ = X ×D.

The element d′i =
∑m

j=1 xijdj corresponds to the latency of
the PM which is hosting the i−th VM (since a VM is placed
at exactly one PM, only a single term in the above sum will
be non-zero).

We define the latency of an assignment X as the average of
the elements of D′, i.e., the average latency over all deployed
VMs:

L(X) =

∑n
i=1 d

′
i

n
(1)

B. Availability model

In our model, availability is the ability of the system to
offer at least a minimal functional and accessible service. In
particular, a service instance is considered available if at least
one of its constituent VMs remains accessible, which implies
that the PM hosting it is accessible as well.

We further make the following assumptions:
• We consider two types of PMs, central and edge cloud

ones.
• The probability of failure of a VM i is q

(V)
i , indepen-

dently of the other VMs and PMs, and irrespectively of
the load imposed on the VM.

• The probability of failure of a PM j is q
(P)
j , indepen-

dently of the other PMs or the load imposed on it. It is
reasonable to assume that at the edge, hosts have a greater
failure probability and are thus less reliable. Indeed, VM
replication or migration inside the edge is harder to ensure
due to the scarcity of resources compared to the central
cloud.

• If a PM fails, all VMs deployed on it fail because of that.
• A VM may become inaccessible either because it fails or

because the PM that hosts it fails.
• The system operator knows the value of the PM and VM

failure probabilities, as a result of measurement studies,
prior experience, or other historical information.

Since VM failures can be correlated due to their dependence
on the underlying PMs, we define a correlated group of VMs
as the set of VMs that are executed on the same PM. A
correlated group is available under the following conditions:

• The PM is up.
• At least one of the VMs deployed on the PM does not

fail.

We define the probability that a correlated group deployed
on PM j is available as follows:

aj = (1− q
(P)
j)(1−

∏
i∈[1,n]|xij=1

q
(V)
i) (2)

At least one correlated group should be available in order
to have a service/application deployment available. Since
correlated groups fail independently, the probability that a
service deployment is available is given by

A(X) = 1− Pr{All correlated groups fail}

= 1−
∏

j∈[1,m]|Σn
i=1xij>0

(1− aj)

= 1−
∏

j∈[1,m]|Σn
i=1xij>0

q(P)
j + (1− q

(P)
j)

∏
i∈[1,n]|xij=1

q
(V)
i

(3)

Note that, by construction, any feasible solution includes at
least one PM with at least one VM assigned to it; therefore,
both product terms in (3) are over non-empty sets.

C. Cost model

In our prior work [5], we considered that the deployment
of a VM comes with a fixed management overhead. In this
work, however, not all VMs come with the same cost. In
particular, we treat cost as a function of the associated VM
workload (in terms of the number of vCPUs allocated to the
VM and under the assumption that more powerful VMs handle
more application workload). This cost may also account for the
energy consumed for booting the VM or for operating other
system- or service-level components. Therefore, we define a
VM capacity requirement vector P = [p1 p2 . . . pn], which
represents the CPU capacity needed for the allocation of each
VM; pi is the service/application requirement in terms of the
number of virtual CPUs for VMi.

We also assume a PM-level cost, which is a fixed overhead
and is not a function of the PM workload nor the number of
VMs hosted by it (e.g., energy cost for keeping the physical
machine in an operating state).

Therefore, the cost of an assignment X at the VM level is
given by

CV (X) = eV

n∑
i=1

pi, (4)

where eV is the fixed cost per vCPU assigned to a VM.
The cost at the PM level is determined by the number and

the type of the PMs involved. Note that we consider it more
costly to operate on edge hosts. This is due to the value and
scarcity of edge resources. We assume that when involving a
PM in an assignment, this comes with a fixed PM-level cost.
We encode these fixed costs in vector K = [k1 k2 . . . km],
each element of which corresponds to the cost associated with
a specific PM. The PM-level cost of an assignment is defined

Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

as the sum of the fixed costs of all the PMs that are used, i.e.,
the PMs that host at least one of the service’s VMs:

CP (X) =
m∑
j=1

kj1(
n∑

i=1

xij > 0). (5)

The overall cost of a placement is then given by

C(X) = CV (X) + CP (X). (6)

D. Objective

The objective of the system is to derive an optimal assign-
ment that minimizes latency while maximizing availability.
Each criterion drives VM placement towards a different type
of solutions. Focusing on a low latency service deployment
will lead the system to place the service components at edge
servers, which provide shorter response times but are more
expensive. On the contrary, traditional central DCs offer higher
availability but with longer delays. Since it is not possible
to optimize for both criteria at the same time, we apply a
scalarization approach to transform the problem to a single-
objective one. The relative importance of the two criteria in
deriving an optimal placement is dictated by a specific policy,
which is encoded in a pair of weights, wl for latency and wa

for availability, such that wl+wa = 1. Given a specific policy
that depends on the particular uRLLC service, the system
operator derives the optimal solution to the following problem:

minimize
X

wlL(X)− waA(X) (7)

subject to C(X) < E (8)
A(X) > A (9)
m∑
j=1

1(xij > 0) ≤ 1, ∀i ∈ [1, n] (10)

n∑
i=1

pi × xij ≤ uj ,∀j ∈ [1,m] , (11)

with U = {u1, u2...um} representing the available CPU
capacity for each of the m PMs.

In the proposed formulation we consider a budget con-
straint (8) which limits the cost of the service deployment
to below E and ensures that an initial budget agreement with
the customer is not violated. Constraint (9) ensures a service
with a minimum availability. Constraint (10) ensures that each
VM is assigned to a single host, since a VM cannot be split,
and constraint (11) guarantees that the capacity of each host
is not exceeded.

IV. A GENETIC ALGORITHM FOR VM PLACEMENT

Many VM or network function placement problems are
known to be NP-hard [17] and various heuristics are being
proposed for this reason. Therefore, we present in this section a
Genetic Algorithm (GA) meta-heuristic tailored to our model,
that we selected to tackle our VM placement problem. A
GA solves an optimization problem applying iteratively two
main operations: crossover and mutation. It encodes each
potential solution as a chromosome (a sequence of characters)

of properties called genes and characterizes each solution with
a fitness value, which is an expression of the solution’s quality.
The GA starts with an initial pool of candidate solutions and
iteratively tunes them to produce new generations of better
quality by using crossover to generate new chromosomes
from selected parents and mutation to randomly adjust a
chromosome.

Our genetic algorithm is inspired by the work of Xu and
Fortes [18], who proposed a Grouping Genetic Algorithm
(GGA) to solve the problem of VM placement on physical
resources, aiming to optimize, as in our case, a multi-objective
function. Their objectives are minimizing resource wastage,
power consumption and maximum thermal dissipation. These
three objectives are conflicting because placing VMs on a
small number of PMs increases thermal dissipation in the used
PMs, while the two other objectives decrease.

In the same spirit, our GGA integrates our availability and
latency objectives. Unlike Xu and Fortes, though, who use a
fuzzy logic system as a fitness function to jointly consider the
three objectives, our fitness function is dictated by the weights
(policy) and is a direct application of our objective function
equation (7).

Our GGA takes as input the number of VMs and creates an
initial solution by generating S random assignments of VMs
to PMs. For each solution in S, each group of VMs on a PM
is a gene. Once the initial solution pool is generated, the GGA
runs for G generations.

Xu and Fortes [18] introduced a ranking-crossover operator,
which is an improved version of the classical crossover. The
latter choses genes blindly from selected parents. On the other
hand, ranking-crossover selects the genes which have a higher
rank according to the average value of specific efficiency
functions defined per objective, hence expected to produce
higher quality offspring.

In our case, for each ranking-crossover operation, our
GGA calculates the efficiency value for each involved gene
from two random chromosomes. Contrary to their work, we
chose as an efficiency function the distance between a gene’s
derived values for latency and availability given by (1) and (3)
respectively, and ideal ones. These ideal values are probably
unattainable at the same time by a single gene and correspond
to a utopian case. For example, we have set the ideal values to
ul ≈ 0 (latency) and ua = 100% (availability). Our efficiency
function is defined as the Euclidean distance between the
utopian point (ul, ua) and the point representing the gene’s
latency and availability values (l, a), formulated as:

E =
√
(ul − l)2 + (ua − a)2.

After deriving E for each gene, the GGA ranks them from
the smallest distance, which corresponds to the highest rank, to
the largest one, and creates a new chromosome by combining
the highest-ranking genes.

Note that for each generation G, this procedure is repeated
in order for a number of new chromosomes to be gener-
ated, which is specified by the crossover rate rc parameter.
Therefore, the GGA produces rcS offspring on average on

Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

each generation. The solution pool population at the end of
a generation is constructed by evaluating the fitness function
for each chromosome and keeping the top-S of them. After
G generations, our algorithm terminates by returning solution
with the highest fitness function value. During the whole
process our GGA eliminates solutions that violate any of the
constraints.

The overall complexity of our GGA is O(Sn+GSmlogm).
The first term refers to the generation of S initial solutions,
each corresponding to a random placement of n VMs over the
m PMs. Then, for each of the G generations, O(m) time is
required for the calculation of the efficiency function for m
parents, and O(mlogm) time is needed for sorting these m
efficiency values. The latter operation is repeated rcS times,
thus yielding a O(Smlogm) complexity per generation.

V. NUMERICAL RESULTS

For our experiments, we consider different configurations,
where we use different types of hosts, central cloud and MEC
ones. We show the positive impact of using edge hosts in
deployment delays and how we capture the trade-off between
latency and availability. We also compare our scheme with a
CPLEX5 implementation in terms of the quality of the solution
and execution time.

We assume a uRLLC service composed of 90 VMs that
need to be deployed over a federated cloud (including edge
DCs). We consider a system with 150 PMs, 100 PMs within
the traditional cloud each with a capacity between 5 and 15
vCPUs, and 50 MEC servers with a capacity between 1 and 6
vCPUs each. Host capacities are selected uniformly at random.
We fix the budget to E = 320 and assume that all PMs of a
specific type incur the same fixed cost. For each edge server,
the PM-level cost is ke = 2, while for each central cloud host
it is kc = 1. The cost of one vCPU assigned to a VM is ev = 1.
All the VMs have the same failure probability qV = 0.001.
The PM failure probabilities are set to qP1 = 0.004 for MEC
servers and qP2 = 0.002 for central cloud servers, since we
assume that the reliabilities are different for the two types of
hosts. We select uniformly at random the delays, which we set
to between 1 and 5 ms for the 50 edge servers, and between
4 and 10 ms for the 100 central cloud servers.

We run both algorithms (CPLEX and GGA) for: (i) the
same number of vCPUs assigned to each VMs, (ii) the same
number of VMs (unless otherwise specified), and (iii) the same
PM delays (D). Regarding the GGA we configure the solution
pool size to S = 80 and the number of generations to G = 30.
We chose those values experimentally, since we found them
representative to a good compromise between execution time
and quality of the solutions.

Fig. 1 outlines the availability and latency function values
for our algorithm for different policies. The values are normal-
ized by mapping the lowest and highest value per objective to
0 and 1 respectively. As it is expected, the results indicate that
the more the policy is latency-oriented (wl > 0.6), the more

5http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

the algorithm sacrifices on availability. In particular, since our
GGA is guided by the applied policy, the objective function
value of equation (7) decreases because the chosen servers for
the deployment have small delays (small values of dj); more
edge servers are used to deploy the service components than
central ones.

This is more clear in Fig. 2 that represents the usage rate of
MEC servers as a function of the applied policy. It can be seen
that when wl increases, more hosts within the edge are used,
because the delays on the edge are smaller and our algorithm
honors hosts which offer minimal latencies.

Figure 3 presents the evolution of cost during the placement,
where the y-axis represents the values of the cost as a function
of the given policy depicted in the x-axis. The straight line
represents the maximum budget set to E = 320 (which can
be fixed with the customer). As can be seen, the cost increases
substantially with wl. We argue this by the fact that the GGA
uses more MEC hosts for the VM placement, which are by
definition more expensive.

In our second experiment we run our GGA by fixing the
policy to (wa, wl) = (0.5, 0.5) (uRLLC service that requires
both latency and availability), using the same number of PMs
and their capacities, and for the same number of vCPUs (200).
We vary the number of VMs in an interval of n ∈ [0 − 60]
for 100 iterations and present results with 95% confidence
intervals. The results of the latter experiment are shown in
Fig. 4 as box-plots illustrating the evolution of the average
latency according to the number of VMs. As depicted in
Fig. 4, when n increases, the average latency decreases. In
fact, adding more VMs leads to their placement in smaller
DCs, which in our case corresponds to edge PMs; the more
VMs we have, the less vCPUs are allocated to each one of
them since the number of vCPUs remains the same for all our
tests.

In Fig. 5, we highlight the evolution of availability as a
function of the number of VMs, for the solutions obtained
by our GGA. The straight line represents the availability
constraint, set to class five (99,999%) of reliability requirement
for uRLLC services.

From the resulting plot we can see that the availability
slightly decreases with the number of VMs, which is compat-
ible with the growing use of MEC servers previously pointed
out. Considering the small capacities within the edge servers,
the VMs with the small number of vCPUs assigned to them
are placed on those servers. However, even if the values of
availability decrease, the availability constraint is not violated.

Regarding the cost, Fig. 6 illustrates its evolution as a
function of the number of VMs for the same case. We clearly
see that the cost increases with the number of VMs, which
positively supports our results from the two previous figures.
The cost is affected by the use of PMs from the edge, which
are more expensive.

In our third experiment, we implement our model in the
CPLEX environment and use its optimizer to derive exact
optimal solutions. We compare and evaluate the CPLEX
results with our GGA.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
a
il
a
b
il
it

y
 a

n
d
 L

a
te

n
c
y
 f

u
n
c
ti

o
n
 v

a
lu

e
s

wl

Latency
Availability

Fig. 1. Availability and latency as functions of
the selected policy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

M
E
C

 s
e
rv

e
rs

 u
ti

li
z
a
ti

o
n
 (

%
)

wl

MEC use

Fig. 2. MEC servers utilization as a function of
the policy.

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

C
o
s
t

fu
n
c
ti

o
n
 v

a
lu

e
s

wl

Cost
Budget

Fig. 3. Evolution of cost with the latency-
oriented policy. The straight line represents the cost
constraint (budget).

 0

 2

 4

 6

 8

 10

 12

 14

20 30 40 50 60

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Number of VMs

Fig. 4. Box-plot showing VMs’ impact on the
average latency of a service deployment.

0.999987

0.999988

0.999989

0.999990

0.999991

0.999992

0.999993

0.999994

0.999995

0.999996

 20 30 40 50 60

a
v
a
il
a
b
il
it

y
 f

u
n
c
ti

o
n
 v

a
lu

e

number of VMs

solution's availability
Availability constraint

Fig. 5. Availability as a function of the number
of VMs. The straight line represents the availability
constraint.

 150

 200

 250

 300

 350

 20 30 40 50 60

c
o
s
t

fu
n
c
ti

o
n
 v

a
lu

e

number of VMs

Cost
budget

Fig. 6. Cost objective value as a function of the
number of VMs. The straight line represents the
cost constraint.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

v
a
lu

e
s
 o

f
th

e
 o

b
je

c
ti

v
e

wl

CPLEX
GGA

Fig. 7. Comparison between our GGA and CPLEX in terms of the objective
for a specific policy.

Fig. 7 presents a comparison of the objective function
values obtained for the same configuration for our GGA
(green curve, “x” points) and CPLEX (purple, cross points)
as a function of the applied policy. Since we are solving
a minimization problem, lower values for a specific weight
combination mean better performance. Our meta-heuristic is
shown to approximate well the optimal solutions provided by
CPLEX.

Fig. 8 presents the execution time results for both CPLEX
and GGA for increasing numbers of available servers. Our
experiments were performed on an Intel i7 machine with 8
CPU cores and 8 GB of RAM, running Ubuntu 14.04. It can
be seen that our GGA scales well as the number of PMs grows.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350

T
im

e
 (

s
)

number of PMs

GGA
Cplex

Fig. 8. Execution time as a function of the number of PMs for our GGA
and CPLEX.

Even for more than 200, it produces a solution close to the
optimal in an order of a couple of minutes. On the other hand
the execution time of CPLEX increases dramatically, and it
stops producing solutions for problem instances with more
than approximatively 150 PMs. Note that we carried out those
experiments by fixing the policy to wl = wa = 0.5.

VI. CONCLUSION

In this paper, we presented our study on the problem
of placing VNF instances on a mixed environment which
considers two different types of hosts, namely PMs from the
edge and the central cloud. We proposed a multi-objective op-
timization formulation of the problem that captures the trade-
off between service access latency and availability, which

Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

correspond to the criteria of uRLLC services. To solve this
placement problem, we provided an appropriate adaptation
of the Genetic Algorithm meta-heuristic. Our experimental
results show that our solutions are close to the optimal, while
simultaneously it takes considerably less time to derive them
than an exact algorithm provided by CPLEX. We have also
shown how our method can reduce delays and still provide a
highly-available service.

Our approach tackles important aspects regarding uRLLC
services, but more needs to be done, and this is the subject
of our ongoing work. First, we will consider different types
of components, such as caches, which may influence the type
of resources needed and thus the number of vCPUs as well
as the number of VMs. Second our mechanism will take into
account failure recovery in case of PM breakdowns, especially
at the edge and for critical services, such as the connected car.
Finally, we are exploring uses of our model with respect to the
establishment of SLAs with the customer, in order to create a
clear common understanding about different services.

REFERENCES

[1] A. Ksentini, P. A. Frangoudis, P. C. Amogh, and N. Nikaein, “Providing
low latency guarantees for slicing-ready 5G systems via two-level MAC
scheduling,” IEEE Network, 2018, in press.

[2] Mobile Edge Computing (MEC); Framework and Reference Architec-
ture, ETSI Group Specification MEC 003, 2016.

[3] Mobile Edge Computing (MEC); Mobile Edge Management; Part 2:
Application lifecycle, rules and requirements management, ETSI Group
Specification MEC 010, 2017.

[4] Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing
in an NVF environment, ETSI Group Report MEC 017, 2018.

[5] L. Yala, P. Frangoudis, G. Lucarelli, and A. Ksentini, “Balancing
between cost and availability for cdnaas resource placement,” in Proc.
IEEE GLOBECOM, 2017.

[6] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-saving
virtual machine placement in cloud data centers,” in Proc. IEEE/ACM
CCGrid, 2013.

[7] N. Quang-Hung, N. T. Son, and N. Thoai, “Energy-saving virtual
machine scheduling in cloud computing with fixed interval constraints,”
in Transactions on Large-Scale Data-and Knowledge-Centered Systems
XXXI. Springer, 2017, pp. 124–145.

[8] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[9] F. B. Jemaa, G. Pujolle, and M. Pariente, “QoS-aware VNF placement
optimization in edge-central carrier cloud architecture,” in Proc. IEEE
GLOBECOM, 2016.

[10] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal VNFs
placement in CDN slicing over multi-cloud environment,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 616–627, 2018.

[11] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 725–739,
2016.

[12] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Proc. IFIP
Networking, 2015.

[13] K. Katsalis, T. G. Papaioannou, N. Nikaein, and L. Tassiulas, “SLA-
driven VM scheduling in Mobile Edge Computing,” in Proc. 9th IEEE
International Conference on Cloud Computing (CLOUD), 2016, pp.
750–757.

[14] Z. Wen, J. Cała, P. Watson, and A. Romanovsky, “Cost effective,
reliable and secure workflow deployment over federated clouds,” IEEE
Transactions on Services Computing, vol. 10, no. 6, pp. 929–941, 2017.

[15] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal
scheduling in hybrid IaaS clouds for deadline constrained workloads,”
in Proc. IEEE 3rd International Conference on Cloud Computing
(CLOUD), 2010, pp. 228–235.

[16] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-
aware VNF placement and chaining based on a flexible resource allo-
cation approach,” in Proc. 13th International Conference on Network
and Service Management (CNSM), 2017.

[17] Z. A. Mann, “Allocation of virtual machines in cloud data centers–a
survey of problem models and optimization algorithms,” ACM Comput.
Surv., vol. 48, no. 1, p. 11, 2015.

[18] J. Xu and J. A. B. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Proc. 2010 IEEE/ACM Int’l
Conference on Green Computing and Communications (GreenCom), &
Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
2010, pp. 179–188.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on December 14,2021 at 07:52:47 UTC from IEEE Xplore. Restrictions apply.

