
Provably Efficient Algorithms for Joint Placement
and Allocation of Virtual Network Functions

Yu Sang, Bo Ji, Gagan R. Gupta, Xiaojiang Du, and Lin Ye

Abstract—Network Function Virtualization (NFV) has the po-
tential to significantly reduce the capital and operating expenses,
shorten product release cycle, and improve service agility. In
this paper, we focus on minimizing the total number of Virtual
Network Function (VNF) instances to provide a specific service
(possibly at different locations) to all the flows in a network.
Certain network security and analytics applications may allow
fractional processing of a flow at different nodes (corresponding
to datacenters), giving an opportunity for greater optimization
of resources. Through a reduction from the set cover problem,
we show that this problem is NP-hard and cannot even be
approximated within a factor of (1 − o(1)) lnm (where m is
the number of flows) unless P=NP. Then, we design two simple
greedy algorithms and prove that they achieve an approximation
ratio of (1 − o(1)) lnm + 2, which is asymptotically optimal.
For special cases where each node hosts multiple VNF instances
(which is typically true in practice), we also show that our
greedy algorithms have a constant approximation ratio. Further,
for tree topologies we develop an optimal greedy algorithm by
exploiting the inherent topological structure. Finally, we conduct
extensive numerical experiments to evaluate the performance of
our proposed algorithms in various scenarios.

I. INTRODUCTION

Network Function Virtualization (NFV) is emerging as a
promising technology in the evolution of networking [1] to
replace proprietary hardware appliances (e.g., middleboxes)
with software modules running on general-purpose commod-
ity servers. These modules provide one or multiple specific
network services (such as Firewalls, WAN Optimizers, Load
Balancers, and Network Address Translators) called Virtual
Network Functions (VNFs). These services can be placed
along the path of a network flow in a specific order (i.e.,
Service Function Chaining) [2], potentially in a dynamic
manner. Software-Defined Networking (SDN) [3] is usually
integrated with NFV to enable the centralized control as SDN
is aimed to separate the control plane from the physical
infrastructure. This results in a highly flexible architecture
and has the potential to significantly reduce the capital and
operating expenses, shorten product release cycle, and improve
service agility. In this paper, we focus on the problem of
optimal placement and allocation of VNF instances to provide
a specific service to all the flows in the network.

Yu Sang, Bo Ji, and Xiaojiang Du are with the Department of
Computer and Information Sciences, Temple University, Philadelphia,
PA, and Lin Ye is with Harbin Institute of Technology, China. Emails:
yu.sang@temple.edu, boji@temple.edu, gagan.gupta@iitdalumni.com,
dxj@ieee.org, and hityelin@hit.edu.cn. This work was supported in part by
the US NSF under grant CNS-1564128.

We focus on the scenario of one single network function
that requires all the data packets of the flows to be processed
before they leave the network. This is common for many
network services related to security and analytics, such as
Intrusion Detection Systems (IDSs) [4] [5], Intrusion Pre-
vention Systems (IPSs) [6], Deep Packet Inspection (DPI)1,
and network analytics/billing services. Each VNF instance
is implemented at a virtual machine with limited resources
and processing capacity. A network node (corresponding to
a datacenter) can dynamically grow or shrink its capacity by
spinning up or spinning down VNF instances. While existing
work commonly assumes that a flow is completely processed
at a single node for one function (e.g., [7]), in our model
we consider a more general setting where one flow may be
fractionally processed at a network node and the network
function can be completed at multiple nodes. This model is
based on widely adopted technologies. For example, in the
Enhanced Packet Core (EPC) of mobile networks, packets are
commonly encapsulated in GTP tunnels. Packets in the same
GTP tunnel can be fractionally processed at different network
nodes (locations) based on the IPs of the GTP payload.
Another way to do fractional processing is by computing hash
functions on fields in the packet headers.

To the best of our knowledge, existing work on VNF
placement is limited to the design of heuristic algorithms,
and none of the proposed algorithms can provide provable
performance guarantees. In [2], a scheduling algorithm is
proposed, but this work assumes a special fat-tree topology
and focuses on delay performance. In [8], an algorithm based
on dynamic programming is proposed to attack large instances
of VNF placement problem. In [7], the authors consider a
model with a single type of VNF and present a heuristic
algorithm towards solving the placement problem. In [9],
the authors propose a new architecture, called Stratos, for
orchestrating VNFs outsourced to a remote cloud through
traffic engineering, horizontal scaling of VNFs, etc. In another
open source project [10], OpenNF is proposed to extend the
centralized SDN paradigm by integrating a control plane for
VNFs. There are several other works that extend the VNF
placement problem to more sophisticated applications, such
as Service Function Chaining [11]–[13]. However, the main
focus of [12] and [13] is on latency and physical resource
usage, respectively. For [11], although a similar objective is
considered, no performance guarantee is provided for their

1In some cases, it is not required to process all the packets of a flow. For
example, some DPI functions only check a small percentage of packets of a
flow. In our model, we only consider the fraction that needs to be processed.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE

solution. One exception that provides provable performance
guarantees is the work of [6]. However, network topology is
not considered in their model.

We consider the problem of joint placement and allocation
of VNFs (denoted by JPA-VNF) with an objective of minimiz-
ing the total number of VNF instances. Note that even under
a simplifying assumption of one single network function, the
formulated problem is non-trivial (see Section III). The main
difficulty of this problem is to decide intelligently which flows,
and more specifically, what fraction of the flows need to be
processed at a given node so that the computing resource of
the placed VNF instances is not left under-utilized.

We formulate JPA-VNF as a Mixed Integer Linear Program-
ing (MILP) problem and prove its NP-hardness through a re-
duction from the set cover problem. Using a similar reduction,
we also show that JPA-VNF cannot even be approximated
within a factor of (1 − o(1)) lnm (where m is the number
of flows) unless P=NP. Then, we design two simple greedy
algorithms and rigorously prove that they can achieve an
approximation ratio of (1 − o(1)) lnm + 2, which is thus
asymptotically optimal. In many NFV-based applications of
practical interest, such as those in cellular networks, the flow
rates are usually very large, and it typically requires multiple
VNF instances at a single node (datacenter) to process the
flows. In such scenarios, we can even prove a constant approxi-
mation ratio for our proposed greedy algorithms. Furthermore,
for networks with tree topologies, we design an optimal greedy
algorithm by exploiting the inherent topological structure.
Finally, we conduct numerical experiments both on a randomly
generated dense graph and on a realistic backbone network
topology of InternetMCI [14]. We evaluate the performance of
our proposed algorithms in various scenarios. The simulation
results show that our proposed algorithms perform very well
in all the scenarios we consider.

The remainder of the paper is organized as follows. In
Section II, we describe our system model and formulate the
JPA-VNF problem. In Section III, we prove the hardness of
the formulated JPA-VNF problem, and in Section IV, we
propose two simple greedy algorithms and prove that they
are asymptotically optimal. Then, we consider tree topologies
in Section V and propose an optimal algorithm. Finally,
we conduct simulations in Section VI and make concluding
remarks in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network that can be modeled as a connected,
undirected graph G = (V,E), where V is the set of nodes and
E is the set of edges. Let n = |V | denote the number of nodes.
Each node represents a possible location for a VNF instance,
which could be a cluster or a private datacenter owned by
a certain network operator or a service provider. Each edge
denotes the link between two such locations. We assume that
there are m data flows in the network. Let F denote the set
of flows. Each data flow enters the network at a source node,
traverses a sequence of links/nodes, and leaves the network
after reaching the destination node. Let dj and Pj be the flow

Fig. 1: An example network with six nodes and three flows.

rate and path of flow fj ∈ F , respectively. We assume that
all the flow paths are loop free. In particular, Pj is denoted
by a sequence of distinct nodes {vj1, v

j
2, . . . , v

j
|Pj |} that are

connected by a sequence of links. Let Li = {f i
1, f

i
2, . . . , f

i
|Li|}

denote the set of flows that pass node vi. See Fig. 1 for an
example network.

While in the traditional networking paradigm, network
functions are implemented on proprietary hardware and can
only be placed at fixed locations, in a virtualized network
environment VNF instances can be placed at any node as
needed. A VNF instance is usually implemented on a standard
virtual machine with limited amount of resource. However, a
node can activate multiple VNF instances to increase its total
processing capacity. In this paper, we focus on the scenario of
single network function that requires all the data packets of a
flow to be processed before they leave the network. We assume
that one VNF instance has R units of computing resource. For
ease of presentation, we assume that processing one unit of
data requires one unit of computing resource. Let xi be the
number of VNF instances placed at node vi. Then, the total
processing capacity of node vi is xiR. The resource of one
node could be shared by multiple flows that pass this node.
Let rij denote the amount of computing resource allocated to
flow fj at node vi.

Our goal is to minimize the total number of VNF instances
used in the network, subject to the constraint that all the data
flows need to be fully processed before leaving the network.
This is a joint problem of placement and allocation of VNF
instances: not only do we need to decide how many VNF
instances to place at each node, but also need to determine
how to allocate the computing resource of each VNF instance
to process the flows passing each node. We formulate JPA-
VNF as the following MILP problem:

min
xi

n∑
i=1

xi

subject to
∑

i:vi∈Pj

rij ≥ dj , for all 1 ≤ j ≤ m, (1)

m∑
j=1

rij ≤ xiR, for all 1 ≤ i ≤ n, (2)

xi ∈ {0, 1, 2, . . . }.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

We assume that a flow can be processed at multiple nodes
along its path. Constraint (1) means that the total resource that
flow fj receives from all the nodes on its path should be no
less than its rate dj . Constraint (2) means that the total demand
for node vi cannot exceed its processing capacity.

III. HARDNESS OF JPA-VNF

In this section, we show that JPA-VNF is NP-hard through
a reduction from the set cover problem, which is a well-known
NP-hard problem. Similarly, we show that JPA-VNF cannot be
approximated within a factor of (1− o(1)) lnm unless P=NP.

We start by introducing the classic set cover problem.
Consider a set U = {e1, e2, . . . , em} of m elements and
a collection Φ = {u1, u2, . . . , un} of n subsets of U . The
union of all the subsets in Φ equals U , i.e., ∪ni=1ui = U .
The objective is to find the minimum number of subsets in
Φ such that their union equals U . We state the hardness of
JPA-VNF in Theorem 1.

Theorem 1: JPA-VNF is NP-hard.

Proof: Given an arbitrary instance (U,Φ) of the set
cover problem as described above, we construct an instance
(G,F,R) of the JPA-VNF problem. We show that there is
a feasible solution with k VNF instances for the JPA-VNF
problem if and only if there exists a feasible solution of k
subsets in Φ for the set cover problem.

First, we set R to be any positive value. Then, we construct
a graph G with n nodes and a set F of m flows. For each
subset ui ∈ Φ, we add one node vi to G. For each element
ej ∈ U , we construct a flow fj . The path Pj of flow fj
contains vi if ei is an element of uj , i.e., Pj = {vi|ei ∈ uj}.
We create the links such that every flow can traverse the nodes
in its path (e.g., making G a complete graph). We set the rate
of every flow to R/m. This ensures that one VNF instance is
sufficient to fully process all the flows. Then, we calculate the
set of passing flows Li for each node vi. The objective of this
JPA-VNF problem is to find the minimum number of nodes
such that the union of their passing flows equals F . It is easy
to see that this is equivalent to finding the minimum number
of subsets in Φ whose union equals the universe set U .

We use a simple example to illustrate the above construction
process. Consider a set cover problem with U = {1, 2, 3} and
Φ = {u1, u2, . . . , u6}, where u1 = {2}, u2 = {1}, u3 =
{1, 2}, u4 = {1, 3}, u5 = {3}, and u6 = {2}. Based on this
set cover problem instance and the construction in the proof
of Theorem 1, the corresponding flows would be the same as
those shown in Fig. 1. One difference is that the corresponding
network topology is a complete graph and the flow rates are
all 10/3.

In Theorem 2, we state a stronger inapproximability result.
The detailed proof is omitted since a reduction method similar
to that in the proof of Theorem 1 can be applied.

Theorem 2: The JPA-VNF problem cannot be approximated
within a factor of (1− o(1)) lnm unless P=NP.

IV. ASYMPTOTICALLY OPTIMAL GREEDY ALGORITHMS

In this section, we propose two greedy algorithms and
show that they can achieve an approximation ratio of (1 −
o(1)) lnm + 2, which is thus asymptotically optimal due to
the result of Theorem 2.

A. Intuitions

For the set cover problem, a greedy algorithm is known to
attain the best possible approximation ratio that a polynomial-
time algorithm can achieve. It chooses a subset u∗i with the
largest number of uncovered elements in an iterative manner
until all the elements in Φ are covered. Inspired by this greedy
algorithm for the set cover problem, we develop two greedy
algorithms for JPA-VNF. As shown in Theorem 1, every subset
ui in a set cover problem corresponds to a node vi in a JPA-
VNF problem. An intuitive approach is that we treat each
flow as an element in the set cover problem and do not
consider the flow rates. This leads to our first algorithm -
the Flow Number based Greedy (FNG) algorithm. The FNG
algorithm iteratively chooses a node with the largest number of
unprocessed flows passing it. Another similar greedy strategy
is to choose a node that has the largest amount of unprocessed
data in each iteration. Based on this intuition, we propose our
second greedy algorithm - the Flow Rate based Greedy (FRG)
algorithm. At first glance, FRG seems to work better since
it uses additional information of flow rates. However, in our
technical report [15], we provide two examples to show that
neither of them dominates. More interestingly, we prove that
both greedy algorithms are asymptotically optimal.

Note that two obvious factors distinguish the JPA-VNF
problem from the set cover problem. In the set cover problem,
an element is covered as long as it is included in one of
the chosen subsets. However, in our problem it matters which
nodes are used to process a flow. If a flow is fully processed
at a node, then there is no need to allocate computing resource
to this flow at the other nodes along its path. This resource
allocation problem also leads to the second difference. In the
set cover problem, each subset has two states: either selected or
not selected. However, in JPA-VNF a node could have multiple
VNF instances, which leads to a much larger state space.
Considering these two factors, when a node is selected, we
choose to process all the flows that pass this node. We design
the algorithms in such a manner instead of splitting the flow
rates among multiple nodes due to the following reason. As the
graph becomes larger and the flows interact with each other
in a more complex way, the number of possible combinations
increases exponentially. Our strategy is appealing because it
leads to low-complexity algorithms with only minimal drop
in the performance. In addition, our proposed algorithms tend
to place VNF instances at as few nodes as possible, which is
preferred from the application point of view.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Algorithm 1 FNG(G,F,R)

1: Let U be the set of all unprocessed flows. Initially, set
U = F = {f1, f2, . . . , fm}.

2: Let Si denote the set of unprocessed flows that pass node
vi. Initially, set Si = Li for all i.

3: while U 6= ∅ do
4: Find vi∗ such that i∗ ∈ argmaxi|Si|. Choose the node

with the smallest index i when there is a tie.
5: Process all the flows in Si∗ at node vi∗ , i.e., place xi∗ =⌈∑

j:fj∈Si∗
dj

R

⌉
VNF instances at node vi∗.

6: Allocate the computing resource to these unprocessed
flows according to their flow rates, i.e., ri∗j = dj for
all j such that fj ∈ Si∗ .

7: Set U = U\Si∗ .
8: Set Si = Si\Si∗ for all i.
9: end while

B. Flow Number based Greedy Algorithm

We first introduce the FNG algorithm. FNG iteratively
chooses a node that covers the largest number of unprocessed
flows and places just sufficient VNF instances at this node such
that all the flows passing this node can be fully processed. We
describe the details of FNG in Algorithm 1.

Note that VNF instances are usually deployed on virtual
machines with a limited amount of computing resource. In
many applications like cellular networks, the flow rates can
be very large, whereas there are only a limited number of
datacenters in the network. A datacenter may need a large
number of VNF instances to provide certain network function
or service. Therefore, the number of VNF instances at each
datacenter is typically large, which leads to an approximation
ratio close to 1. We first state Lemma 1 based on this
observation. Then, we will use it to prove the main result
about FNG.

Lemma 1: Consider the FNG algorithm. Suppose a total of
h VNF instances are placed at t different nodes. Let A = h/t
be the average density of the solution. Suppose A 6= 1.
Then, FNG guarantees an approximation ratio smaller than
A/(A− 1).

Proof: Let D be the total amount of data rates of all the
flows, i.e., D =

∑m
j=1 dj . Due to the way FNG functions,

each node has at most one VNF instance whose computing
resource is not fully used. Therefore, the total resource waste
should be less than tR, i.e., hR−D < tR. Hence, we have

D > (h− t)R =
A− 1

A
hR. (3)

Now, we consider an optimal solution that uses a total
number of O∗ VNF instances. It must be satisfied that the
total computing resource is no smaller than the total flow rate
due to Constraint (1), i.e.,

O∗R ≥ D. (4)

By combining Eqs. (3) and (4), we derive h < A
A−1O

∗. This
implies that FNG guarantees an approximation ratio smaller
than A/(A− 1).

Lemma 1 implies that if the average number of VNF
instances at a node is greater than 1 (i.e., A ≥ 2), the
approximation ratio will be smaller than 2. Note that in
practice, the density of a solution could easily be much larger.
Consider a cellular network with 100 datacenter nodes and 10
million flows (users) with an average flow rate of 1 Mbps. If
the processing capacity of one VNF instance is 1 Gbps, then it
is guaranteed that there will be at least 10,000 VNF instances
over 100 datacenters. Hence, the density will be at least 100,
and thus, the solution computed by FNG is guaranteed to be
within 1% of the optimal. Through Lemma 1, we can see that
processing a flow entirely at a single node not only simplifies
NFV orchestration but also ensures a minimal performance
loss. A = 1 implies that there is exactly one VNF instance at
every node that hosts VNF instances. In such cases, the JPA-
VNF problem can be as difficult as the set cover problem.

The intuition behind Lemma 1 is as follows. When the
algorithm gives a dense solution, in which all the VNF
instances are placed at a small number of nodes, rather than
sparsely spreaded over the entire network, the solution is
typically very close to optimal. This is because resource
waste at a single node cannot exceed R. Placing the VNF
instances at fewer nodes will lead to less resource waste.
We will prove the performance guarantee of FNG (stated in
Theorem 3) based on the insight obtained from Lemma 1.

Theorem 3: The approximation ratio of FNG is no greater
than (1− o(1)) lnm + 2.

Proof: We first divide the original JPA-VNF problem into
two subproblems. Then, we use FNG algorithm to solve these
two new problems and get two solutions, a dense one and
a sparse one. We will prove that the combination of these
two solutions is equivalent to the FNG solution to the original
JPA-VNF problem. The dense solution achieves a constant
approximation ratio as shown in Lemma 1, and for the sparse
one, we prove that the approximation ratio is no greater than
(1− o(1)) lnm.

Consider a JPA-VNF problem I = (G,F,R). Assume that
the total number of VNF instances used by the FNG algorithm
and an optimal algorithm are H and O∗, respectively. We
divide the flow set F into two subsets F1 and F2 and construct
two new JPA-VNF problems. The partition is done is the
following way. Recall that in every iteration of the FNG
algorithm, we choose one node vi and allocate VNF instances
to process all the unprocessed flows that go through node vi.
If we only place one VNF instance at vi, then all the flows
processed by this VNF instance belong to F1; otherwise, they
belong to F2. By doing this in each iteration, we construct
flow sets F1 and F2. Note that under the FNG algorithm,
every flow is completely processed at a single node. Therefore,
F1 and F2 are disjoint, and their union equals F . We keep
the original network topology and obtain two subproblems:

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

I1 = (G,F1, R) and I2 = (G,F2, R). We will compare the
performance of FNG and the optimal algorithm for these two
subproblems. Let H1 and H2 denote the number of VNF
instances in the solutions given by FNG for these two sub-
problems, respectively, and let O∗1 and O∗2 denote the number
of VNF instances in the optimal solutions, respectively. Since
I1 and I2 have fewer flows than I , we have

O∗1 ≤ O∗ and O∗2 ≤ O∗. (5)

Now, we characterize the relation between the solutions of
the new problems (i.e., I1 and I2) and the original problem
(i.e., I) under FNG. We will first show the following:

H = H1 + H2. (6)

Then, we will show that the following two inequalities hold:

H1 ≤ (1− o(1))O∗1 lnm, (7)

H2 ≤ 2O∗2 . (8)

Finally, using these intermediate results, we compare our
greedy solution with the optimal solution.

We can prove Eq. (6) by induction. We provide the detailed
proof in our online technical report [15] and briefly describe
the idea here. Consider the solutions given by FNG for
problem instances I , I1, and I2. Suppose that in the solution of
I , node vi hosts xi VNF instances. Then, the following must
be true: in one of the two solutions of the subproblems, node vi
also hosts xi VNF instances, and in the other one, node vi does
not host any VNF instance. Apparently, this implies Eq. (6).
Consider all the nodes chosen in I , we can show that the above
claim holds for all the nodes one by one through induction.
Hence, we have H1 =

∑
i|xi=1 xi and H2 =

∑
i|xi≥2 xi.

Therefore, we can get H1 + H2 =
∑

i xi = H .
Subproblem I1
We now prove Eq. (7). We first construct another JPA-VNF

problem based on I1. Let m1 = |F1|. We change the rate
of every flow in F1 to a very small value. Let dmin be the
lowest flow rate of all the flows in F1. We set the rate of all
the flows to min{dmin, R/m1}. This modification ensures that
every node needs at most one VNF instance to process all the
flows that pass the node under any feasible algorithm, and that
the rate of a flow does not increase. We use F3 to denote the set
of flows with new flow rates. Then, we construct a new JPA-
VNF problem instance I3 = (G,F3, R). Now, we apply FNG
to I3. Assume that FNG uses H3 VNF instances to process
all the flows. FNG does not consider the rate of the flows, and
every node requires only one VNF instance to process all the
flows passing it. Therefore, the solution should be the same
as that for I1, i.e., H3 = H1. For this new instance, let O∗3 be
the optimal solution. The only difference between I1 and I3 is
that the later one has lower flow rates. Therefore, it is easy to
see O∗3 ≤ O∗1 . Note that in this case, I3 can be exactly mapped
to a set cover problem, and FNG also becomes equivalent to
the well studied greedy algorithm for the set cover problem.
Hence, we have

H1 = H3 ≤ (1− o(1))O∗3 lnm1 ≤ (1− o(1))O∗1 lnm,

Algorithm 2 GFT (T, F,R)

1: for p from the largest to the smallest do
2: for q = 1→ lp do
3: if there are flows leaving the network through vp,q

then
4: put ddp,q/Re VNF instances at vp,q to process all

the flows leaving the network through vp,q.
5: while there is computing resource left do
6: Allocate the computing resource to process the

first flow fj in Fp,q .
7: Update the rate of fj if it is not fully processed.

Otherwise, move it out of Fp,q .
8: end while
9: Let F ′ be the set of flows that are fully processed

in this loop (line 3 ∼ line 8). Update the waiting
list and unprocessed flow set of all other nodes,
Fs,k = Fs,k/F

′, Ds,k = Ds,k/F
′ for all s and k.

10: end if
11: end for
12: end for

where the first inequality is due to the achievable approxi-
mation ratio of the greedy algorithm for the classic set cover
problem [16], and the second inequality is due to O∗3 ≤ O∗1
and F1 ⊆ F .

Subproblem I2
Next, we prove Eq. (8). The proof follows immediately from

Lemma 1. Recall that all the nodes in I2 has either no VNF
instance or at least two VNF instances. Assume that FNG
places VNF instances at t2 nodes in I2. Each one of these
t2 nodes has at least two VNF instances. Hence, we have
H2/t2 ≥ 2. Therefore, we have H2 ≤ 2O∗2 from Lemma 1.

Combining Eqs. (5), (6), (7), and (8), we have

H = H1 + H2

≤ (1− o(1))O∗1 lnm + 2O∗2

≤ ((1− o(1)) lnm + 2)O∗.

Therefore, the approximation ratio of FNG is upper bounded
by (1− o(1)) lnm + 2. This, along with Theorem 2, implies
that FNG is asymptotically optimal.

C. Flow Rate based Greedy Algorithm

We briefly introduce the FRG algorithm. Similar to FNG,
FRG iteratively chooses the node with the largest unprocessed
flow rate. Therefore, FRG is different from FNG only in line 4.
For FRG, it chooses v∗i such that i∗ = argmaxi

∑
j∈Si

dj . We
can show that FRG also achieves an approximation ratio of
(1−o(1)) lnm+2. The proof is similar to that of Theorem 3.
We also divide the original problem into two subproblems.
Every subproblem consists of the original topology and a
subset of flows. The only difference is about the proof of
Eq. (6). Eq. (6) shows that if we run the algorithm on these
two subproblems, we will still place the same number of
VNF instances at the nodes as the original problem. The basic

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Fig. 2: An optimal solution generated by GFT for JPA-NFV
with tree topology. Dashed lines denote the flow paths. A
node is denoted by a hollow cycle if there is at least one
VNF instance placed at the node. The rectangles next to the
hollow nodes present the allocation of computing resource to
the flows. Assume that the computing capacity of each VNF
instance is R = 10.

idea is that the partition of flows will not affect which nodes
we choose in every round. Note that Lemma 1 is also true
for FRG. The time complexity of FNG and FRG are both
O(n2 + mn). We provide the proof details and complexity
analysis in the technical report [15] due to lack of space.

V. AN OPTIMAL ALGORITHM FOR TREE TOPOLOGY

As described in our general model, for network operators
who have their own datacenters within the core network,
they may choose to implement their VNF instances that
are scattered over different locations [17] [18]. This general
model leads to an NP-hard problem as we described in
Section III. However, some network services may require the
network to have special topologies. Tree topologies are widely
used for streaming services and Content Delivery Networks
(CDNs) [19]. In such cases, by harnessing the properties of
tree topologies, we propose an optimal solution for JPA-VNF
under some simplifying assumptions.

A. An Optimal Algorithm for JPA-VNF with Tree Topology

We consider a tree network topology, denoted by T . Let
lp denote the number of nodes at the p-th level of the tree.
We assume that the root is at level 1, which is the highest
level. From left to right, all these lp nodes are denoted
by {vp,1, vp,2, . . . , vp,lp}. We assume that all the flows are
upstream flows (i.e., from a lower-level node to a higher-
level node in the tree). We make this assumption for ease of
presentation only; our results can be immediately generalized
to cases where the flows are either upstream or downstream.
Let Tp,q be the subtree rooted at node vp,q .

Our algorithm is based on a key observation: if we check
all the nodes on the path of a flow in a bottom-up manner, we
should not process the flow until it intersects other flows or it is

Step Node Leaving
flow Fp,q

of
VNFs

Resource
allocation

1 v6,2 f4 f4 = 3
f5 = 12

d 3
10

e = 1 3 → f4
7 → f5

2 v5,1 f2
f2 = 3
f5 = 5
f3 = 2

d 3
10

e = 1
3 → f2
5 → f5
2 → f3

3 v3,1 f1 f1 = 3 d 3
10

e = 1 3 → f1

4 v2,2 f6 f6 = 8 d 8
10

e = 1 8 → f6

TABLE I: This table shows how to allocate VNF instances to
the network shown in Fig. 2a under GFT.

about to leave the network. This is because processing a flow at
a lower-level node may lose the opportunity to combine it with
other flows at a higher level. Hence, a good strategy would be
to not process the flow until it reaches the highest-level node
along its path (i.e., at the node through which the flow leaves
the network). Now, we propose our greedy algorithm based on
this key idea. We call this algorithm Greedy For Tree (GFT),
which traverses all the nodes in the tree from the lowest level
to the root node. Let Dp,q be the set of all unprocessed flows
leaving the network through node vp,q and dp,q be the total rate
of all the flows in Dp,q . Once we reach a node vp,q through
which a flow leaves the network, we place VNF instances at
this node to process all the flows in Dp,q. Then, the problem
would be how to allocate the remaining computing resource
if the flow does not consume all the resource. For every node
vp,q , we create a waiting list Fp,q , which consists of all the
unprocessed flows going through vp,q . These flows are sorted
in a nonincreasing order of the level of the node through which
a flow leaves the network. Then, we allocate all the available
computing resource to the first flow in the waiting list. The
detailed operations of GFT are provided in Algorithm 2. To
help understand the operations of GFT, we provide an example
in Fig. 2a and present the detailed steps of this example in
Table I. The time complexity of GFT is O(n + m log n). We
provide the complexity analysis in our technical report [15].

B. Main Result: Optimality

In Theorem 4, we state our main result of optimality.

Theorem 4: GFT is optimal for tree topologies.

A key insight from our investigations for general graphs
is to minimize the waste of resource by processing multiple
flows together at the same node. Therefore, in order to prove
the optimality of GFT, we need to check the nodes where
resource waste happens. We define such nodes as Breaking
Points. Consider a JPA-VNF problem and a feasible solution
for this problem. A node is called a Breaking Point if it
hosts at least one VNF instance whose computing resource
is not fully utilized. Breaking points have a very important
property in one particular type of solutions, which we define
as conservative solutions. A solution is called conservative if
every breaking point in the solution hosts at most one VNF

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

instance that is not fully utilized. Apparently, the solution
given by GFT is conservative. We further introduce another
notion called external flows and then state the property of
breaking points in Lemma 2, which will be used to prove
Theorem 4. For a node vp,q , if the path of a flow has exactly
one end within the subtree Tp,q (including vp,q), we call this
flow an external flow of node vp,q .

Lemma 2: Consider a conservative solution for a JPA-VNF
problem with tree topology. Let vp,q be a breaking point.
Suppose that node vp,q is the only breaking point within
subtree Tp,q and that vp,q does not have any external flows.
Then, no other feasible algorithm can use fewer VNF
instances in Tp,q than the conservative solution.

Proof: Let NT be the number of VNF instances in Tp,q

under the conservative solution. Note that Tp,q only has one
breaking point which is the root node. In this case, the VNF
instances within Tp,q only process the flows whose full paths
are within the subtree. Let Ft be the set of all such flows. Note
that all the flows in Ft must be processed within Tp,q . The
total rate of the flows in Ft is

∑
fj∈Ft

dj . Since the solution is
conservative, computing resource waste occurs for at most one
VNF, which must be at node vp,q . This implies

∑
fj∈Ft

dj >
(NT − 1)R. Therefore, no other feasible algorithm can place
fewer than NT VNF instances in Tp,q to process all the flows
in Ft.

The key idea of the proof is as follows. If none of the
breaking points have external flows, we can iteratively
remove the subtrees rooted at breaking points in a bottom-up
manner. In each iteration, we remove a subtree with only
one breaking point, which is its root. The solution given
by GFT is conservative. Lemma 2 implies that no feasible
algorithm can use fewer VNF instances in the subtrees.
Every time we remove such a subtree, we construct a new
JPA-VNF problem instance based on the remaining topology.
Since there is no external flow for the subtree’s root (i.e.,
the breaking point), the VNF instances left in the network
can still form a conservative solution for the new instance.
By doing this repeatedly, we can show that the algorithm
achieves optimality after all breaking points are removed.
However, breaking points can have external flows. In the
following, we show that processing these external flows
actually do not increase the number of VNF instances. We
can simply remove all the external flows of the breaking
points iteratively and get the simpler case as described above.
The detailed proof is provided in the following.

Proof of Theorem 4: Consider a JPA-VNF problem I =
(T, F,R) on a tree topology T . Let Ng and No be the number
of VNF instances used by GFT and an optimal algorithm. Our
goal is to show the following:

Ng ≤ No. (9)

We first remove all the external flows of the breaking points
such that none of the breaking points have external flows. After

removing external flows, we do not change the placement of
VNF instances. In this case, the computing resource allocated
to process these flows will be wasted and may create new
breaking points. To assist the analysis, we create a priority
queue that consists of all the breaking points. The breaking
points are sorted in a nondecreasing order of the level. The
breaking points at the same level are sorted from left to right
to break the tie. In each iteration, we check the breaking
point at the head of the queue. We remove all the external
flows of this breaking point if there is any and then remove it
from the queue. If there are new breaking points generated in
this process, those new breaking points are inserted into the
priority queue. We repeat the procedure until the priority queue
becomes empty. Note that the external flows of a breaking
point must already be fully processed within the subtree rooted
at this breaking point. Otherwise, the remaining resource of
this breaking point would have been allocated to process it.
Therefore, new breaking points would only appear at a lower
level. Hence, this procedure scans all the breaking points
(including the new ones coming up during this procedure) of
the tree from the root to the leaves.

Next, we want to show that throughout the above proce-
dure, removing external flows of a breaking point does not
reduce the number of VNF instances placed within the subtree
rooted at each breaking point. We prove this by contradiction.
Suppose that the number of VNF instances decreases after
an external flow is removed. Then, there must exist at least
one VNF instance, whose computing resource is entirely used
to process external flows. However, this could not happen
because GFT would not activate a new VNF instance for an
external flow in the first place. This implies for all the nodes
that host VNF instances, only part of the computing resource
of one VNF instance is used to process external flows of this
node. This property also ensures that each of the new breaking
points hosts at most one VNF instance that is not fully utilized.

We now consider the system with all the external flows
removed for each breaking point. Let Fr denote the set of
remaining flows. We can construct a new JPA-VNF problem
I ′ = (T, Fr, R). Assume that there are k breaking points in
I ′, including all the new breaking points. We denote the set
of all breaking points by V ′ = {vp1,q1, vp2,q2, · · ·, vpk,qk}. The
breaking points are sorted in a nondecreasing order of their
level, i.e., p1 ≥ p2 ≥ · · · ≥ pk. The nodes at the same level
are sorted according to the second index q. Note that there
remain Ng VNF instances in the system. As mentioned earlier,
every breaking point hosts at most one VNF instance that is
not fully utilized. Therefore, these Ng VNF instances form a
conservative solution for I ′. Assume that an optimal solution
uses N ′o VNF instances to solve I ′. It is easy to see that N ′o ≤
No since Fr ⊆ F . Therefore, in order to prove Eq. (9), it is
sufficient to show the following:

Ng ≤ N ′o. (10)

In the sequel, we prove Eq. (10). We iteratively remove
the subtrees rooted at the breaking points, by starting with
the breaking point at the lowest level (i.e., vp1,q1) and the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

0

2

4

6

8

0

6

12

18

24

30

0

5

10

15

20

0

50

100

150

200

250

0

500

1000

1500

2000

2500

0

15

30

45

60

𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒎𝟏𝒎𝟐𝒎𝟑 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒎𝟏𝒎𝟐𝒎𝟑 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒎𝟏𝒎𝟐𝒎𝟑 𝒍𝟏 𝒍𝟐 𝒍𝟑

𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒎𝟏𝒎𝟐𝒎𝟑 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒎𝟏𝒎𝟐𝒎𝟑 𝒍𝟏 𝒍𝟐 𝒍𝟑𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒎𝟏𝒎𝟐𝒎𝟑 𝒍𝟏 𝒍𝟐 𝒍𝟑

40 flows with large rates

8 flows with small rates 40 flows with small rates 400 flows with small rates

8 flows with large rates 400 flows with large rates

(a) (b) (c)

(d) (e) (f)

Optimal FNG FRG

o

f
V

N
F

in
st

an
ce

s

o

f
V

N
F

in
st

an
ce

s

o

f
V

N
F

in
st

an
ce

s

o

f
V

N
F

in
st

an
ce

s

o

f
V

N
F

in
st

an
ce

s

o

f
V

N
F

in
st

an
ce

s

Fig. 3: Simulation results for the random topology.

corresponding subtree Tp1,q1. According to Lemma 2, no
algorithm can put fewer VNF instances in Tp1,q1. Let N1

gs

and N1
os be the number of VNF instances in subtree Tp1,q1 for

our solution and the optimal solution, respectively. Then, the
following inequality follows from Lemma 2:

N1
gs ≤ N1

os. (11)

We remove subtree Tp1,q1 from T and also remove all the flows
within Tp1,q1. Let T 1 be the remaining topology. Let the set of
remaining flows be F 1

r ⊆ Fr. Now, we have a new JPA-VNF
problem I1 = (T 1, F 1

r , R).
We use N1

g and N1
o to denote the number of VNF instances

left on T 1 after removing Tp1,q1 under our algorithm and the
optimal algorithm, respectively. Note that N1

g = Ng−N1
gs and

N1
o = N ′o −N1

os. Due to Eq. (11), in order to show Eq. (10),
it remains to show N1

g ≤ N1
o .

We repeat the above procedure and argument until all the
k breaking points are removed. Then, there are two cases for
the remaining topology: (i) it is empty; and (ii) it is a tree
without any breaking point. Case (i) is trivial. In Case (ii), let
Nk

g and Nk
o denote the number of VNF instances left in the

remaining topology. Since there is no breaking point, there is
no resource waste for the Nk

g VNF instances. Hence, we have
Nk

g ≤ Nk
o . This completes the proof.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
greedy algorithms in various scenarios. We conduct simula-
tions both for a randomly generated network topology (see
Fig. 4). A more realistic backbone network topology from
InternetMCI [14] is considered in our technical report [15].

The randomly generated network topology consists of 40
nodes and 234 links. We assume that each VNF instance has

Fig. 4: A randomly generated topology with 40 nodes.

a processing capacity of 10, i.e., R = 10. We evaluate the
performance of our proposed greedy algorithms by comparing
them with the optimal solution computed by the GNU Linear
Programming Kit (GLPK) [20]. For the problem instances
we consider, GLPK computes an optimal solution within a
reasonable amount of time.

In order to obtain a comprehensive understanding of the em-
pirical performance of our algorithms, we conduct simulations
in various scenarios. Specifically, we consider the following
settings: (i) different path lengths, (ii) different flow rates,
and (iii) different number of flows. The simulation results are
shown in Fig. 3. Each set of simulation results consists of
6 subfigures; each subfigure consists of the results of three
different settings; each setting has three different simulation
instances. We use the title and the x axis to distinguish
different simulation settings. Along the x axis, we use “s”,
“m”, and “l” to denote the setting where flows have short paths,
medium paths, and long paths, respectively. Label “si” denotes
the i-th simulation instance of the short-path setting. Other
labels have similar meanings. The y axis is the total number

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

of VNF instances used in the network. We will discuss the
impact of path length, flow rate, and topology complexity. The
simulation results show that our algorithms tend to use much
fewer nodes, which is a nice feature from the application point
of view. The discussion about the number of nodes used for
hosting the VNF instances is provided in our online technical
report [15].

Impact of path length: We consider the following ranges
for each type of flow path. A short path has a length uniformly
distributed in the range of [1, n/10] hops, where n is the
number of nodes in the network. Similarly, the range for
the length of a medium path and of a long path is [1, n/4]
hops and [1, n/2] hops, respectively. A larger average path
length implies that the flows have a bigger chance to intersect
each others. This provides a larger room for optimization by
combining the processing of multiple flows at fewer nodes.
Therefore, the total number of VNF instances would decrease
as the average path length becomes larger, especially when
the flow rates are small (see Fig 3-(a), (b), and (c)) since an
isolated small rate flow can generate large resource waste.

Impact of flow rate: Fig. 3-(a), (b), and (c) show the
results where all the flows have small rates. The flow rates
are uniformly distributed in the range of [0, R/m], where m
is the number of flows. Fig. 3-(d), (e), and (f) correspond to the
results for large flow rates, which are uniformly distributed in
the range of [0, 10R]. In both cases, the solutions generated by
the greedy algorithms are very close to the optimal solution.
An intuitive explanation is the following. When the flow rates
are large, the density of the solution given by our algorithms
is typically large (e.g., larger than 10). This leads to an
approximation ratio close to 1 due to Lemma 1.

Impact of topology complexity: The above simulation
results show that our proposed greedy algorithms empirically
perform very well in a randomly generated dense network
topology. However, in reality backbone network topologies are
typically sparse. To that end, we also repeat our evaluations
for a realistic backbone network topology of InternetMCI [14].
The simulation results show that when the topology of a net-
work is more sparse, the performance of our proposed greedy
algorithms becomes closer to that of the optimal solution. The
reason is the following. When the network is smaller and the
topology is more sparse, the room for optimization becomes
smaller, and thus, the performance gap between our proposed
greedy algorithms and the optimal solution also reduces. The
simulation results are similar to Fig. 3 and are thus provided
in our online technical report [15].

VII. CONCLUSION

In this paper, we studied the problem of joint placement
and allocation of VNF instances in a new NFV-enabled
networking paradigm. We proved that the formulated problem
is NP-hard. Then, we proposed two simple greedy algorithms
that are asymptotically optimal in general topologies and an
optimal greedy algorithm for tree topologies. The simulation
results elucidated our theoretical analyses. We believe that
our analytical results provide important insights that will be

useful in practice. However, several important issues remain
unaddressed. First, we have assumed that the flow routes are
fixed. It would be interesting to investigate the problem of
joint VNF placement and flow routing. Second, we considered
a simplified model that has only one single network function.
It would be important to account for the practical constraint
of service function chaining and design new algorithms with
provable performance guarantees in such settings.

REFERENCES

[1] “Etsi. network functions virtualisation introductory white paper.” 2012.
[Online]. Available: https://portal.etsi.org/NFV/NFV White Paper.pdf

[2] Y. Li, L. Phan, and B. T. Loo, “Network functions virtualization with
soft real-time guarantees,” in Proceedings of IEEE INFOCOM, 2016.

[3] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[4] A. Olteanu, Y. Xiao, K. Wu, and X. Du, “An optimal sensor network for
intrusion detection,” in Proceedings of IEEE International Conference
on Communications, 2009, pp. 1–5.

[5] J. Lv, W. Yang, L. Gong, D. Man, and X. Du, “Robust wlan-based indoor
fine-grained intrusion detection,” Proceedings of IEEE GLOBECOM,
2016.

[6] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in Proceedings of IEEE INFOCOM,
2015.

[7] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the network forwarding plane,” in Proceedings of the Workshop on
Programmable Routers for Extensible Services of Tomorrow, 2010, p. 8.

[8] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in Proceedings of 11th International
Conference on Network and Service Management (CNSM), 2015, pp.
50–56.

[9] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella, “Stratos: A network-aware or-
chestration layer for virtual middleboxes in clouds,” arXiv preprint
arXiv:1305.0209, 2013.

[10] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 163–174, 2015.

[11] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan,
and T. Wood, “Virtual function placement and traffic steering in flexible
and dynamic software defined networks,” in The 21st IEEE International
Workshop on Local and Metropolitan Area Networks, 2015, pp. 1–6.

[12] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proceedings of IEEE
4th International Conference on Cloud Networking (CloudNet), 2015.

[13] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in Proceedings of IEEE INFOCOM, 2016.

[14] [Online]. Available: http://topology-zoo.org/maps/Internetmci.jpg
[15] “Provably efficient algorithms for joint placement and allocation of

virtual network functions,” January 2017, technical report. [Online].
Available: https://cis.temple.edu/∼boji/publications.html

[16] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[17] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento,
“Cloud4nfv: A platform for virtual network functions,” in Proceedings
of IEEE 3rd International Conference on Cloud Networking (CloudNet),
2014, pp. 288–293.

[18] J. Soares, C. Goncalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Bar-
raca, R. L. Aguiar, and S. Sargento, “Toward a telco cloud environment
for service functions,” Communications Magazine, IEEE, vol. 53, no. 2,
pp. 98–106, 2015.

[19] S. Seyyedi and B. Akbari, “Hybrid cdn-p2p architectures for live video
streaming: Comparative study of connected and unconnected meshes,”
in Proceedings of International Symposium on Computer Networks and
Distributed Systems (CNDS), 2011, pp. 175–180.

[20] [Online]. Available: https://www.gnu.org/software/glpk/

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

