
Sanjay Gadge, Principal Architect
Vijaya Kotwani, Senior Engineer

Microservice Architecture:
API Gateway Considerations

WHITE PAPER

Table of Contents

Introduction ... 3

The What and Why of API Gateways .. 4

Security ... 5
Authentication and Authorization .. 5
Threat Protection from DDoS ... 6
Secure Communication .. 6
Deployment Considerations ... 6

Service Registry and Service Discovery ... 7
Service Registry ... 7
Service Discovery .. 8

Orchestration .. 9

Transformation .. 9

Monitoring ... 10
Health Monitoring ... 10
Traffic and Data Monitoring ... 10

Load Balancing and Scaling ... 11

High Availability and Failover .. 12

Governance .. 12

Conclusion .. 13

References .. 13

Microservice Architecture: API Gateway Considerations

3

Introduction

Introduction
In today’s extremely competitive business environment,
customers are more demanding than ever and will abandon
a business that is too slow to respond. This has put an onus
on IT to deliver solutions that provide a holistic and uniform
experience to the customer, across all business channels.
Microservice architecture has the potential to address this
business challenge; it is all about achieving speed and safety
at scale and it provides the flexibility to pick and choose
technology for implementing a solution. This approach
positions IT as a business partner rather than in a traditional
support role.

Microservice architecture consists of a suite of independently
deployable, small, modular, and compassable (composable)
services. Each service runs a unique process and
communicates through a well-defined, lightweight
mechanism to serve a business goal. It aligns with the
business to deal with changes in agile fashion, matches
business changes with agile response, and delivers solutions
in a decentralized manner. In addition to modular services,
the API gateway and other elements are integral parts of
microservice architecture (see figure below).

Figure 1.
In addition to modular
services, the API
gateway and other
elements are integral
parts of microservice
architecture.

Microservice Architecture: API Gateway Considerations

4

The What and Why of API Gateways

The What and Why of
API Gateways
Basically, the API Gateway is a reverse proxy to microservices
and acts as a single-entry point into the system. It is similar
to a Facade pattern from object-oriented design and similar
to the notion of an “Anti-Corruption Layer” in Domain
Driven Design. It makes the processes of API design,
implementation, and management considerably simpler and
more consistent. The gateway helps to address some of the
key concerns, including:

• How to deal with features such as security, throttling,
caching and monitoring at one place

• How to avoid chatty communication between clients and
microservices

• How to satisfy the needs of heterogeneous clients
• How to route requests to backend microservices
• How to discover working microservice instances
• How to discover when a microservice instance is not

running

With a single-entry point into the system, it becomes
easy (and manageable) to enforce runtime governance
such as common security requirements, common design
decisions (e.g. every consumer of the service should have
X-Correlation-ID header), and real-time policies such as
monitoring, auditing and measuring API usage, and throttling.
The gateway abstracts microservices from their consumers,

which provides flexibility to freely add or remove microservice
instances to adapt to the load/demand of microservices.
There may be an instance when different consumers of the
service require particular data and/or have it in a special
format. For example:

• An e-commerce mobile app shows product information
and availability of product on the product details
screen, but the desktop website version of the same
e-commerce site shows recommendations, in addition to
product information and availability.

• There are mobile apps where one understands XML
payload and others understand JSON.

The API Gateway is the best place to address these
transformation requirements, which can be accomplished
by providing application-specific APIs for the same business
feature at the gateway level. A one-size-fits-all approach
would make it hard to extend functionality, as the degree of
diversity increases.

The gateway also helps by recording data for analysis
and auditing purposes, load balancing, caching, and
static response handling. The diagram below shows how
the gateway typically fits into the overall microservice
architecture.

Figure 2.
Demonstration of
how a gateway
typically fits into the
overall microservice
architecture

Microservice Architecture: API Gateway Considerations

5

Security

Security
Security is an important requirement of any enterprise
solution. At a certain point in the architecture, the best
options available for authentication, authorization, threat
protection, message protection, etc. must be chosen.

Authentication and Authorization

Federated identity is the preferred solution for implementing
authentication and authorization in microservice architecture.
Each microservice does not necessarily need to obtain
and store users’ credentials in order to authenticate them.
Instead, microservices can use an identity management
system that is already storing a user’s identity to authenticate
the user. This approach allows the decoupling of the
authentication and authorization functions. It also makes it
easier to centralize these two functions, to avoid a situation
where every service must manage a set of credentials for
every user.

There are three major protocols for federated identity:
OpenID, SAML, and OAuth. The figure below shows the
security architecture using OAuth2.0.

Every API request is authenticated at the gateway layer. On
behalf of the end user, the application client first grabs an
access token from the authentication server by presenting
credentials. This access token is then passed along with the
API request in Authorization HTTP header. The API Gateway
then validates the access token with the authorization
server. The JWT token, which contains the claims for the
user, is then passed to backend microservices. Backend
microservices then use the information inside the JWT token
for authorization purpose. The same JWT token is passed
along when one microservice communicates with another
microservice.

The flow above has the potential to be a “confused deputy
problem,” as every microservice is relying on the API
Gateway for authentication. Ideally, every microservice should
authenticate the token as received from its caller (gateway
or microservice). There is a trade-off between security and
performance. The above mentioned architecture leans
toward performance, as there are other mechanisms to
mitigate the security risk.

Figure 3.
Security architecture
using OAuth2.o

Microservice Architecture: API Gateway Considerations

6

Security

The microservice architecture is part of the overall IT
infrastructure for an enterprise. If the enterprise IT is cloud
focused, then you should use a well-known cloud based
authorization server, like Azure Active Directory or AWS
IAM, which can also be integrated with on premise identity
stores, like active directory. An open-source server like
IdentityServer4 makes it possible to implement your own
authorization server and integrate with existing identity stores.

Threat Protection from DDoS

Most of the API Gateway provides (either integral or add-
on packages) features that can handle DDoS attacks,
by regulating and controlling the traffic as it proceeds to
backend microservices. Consider configuring the following
traffic regulating parameters for the API Gateway:

• Limiting the rate of requests: Maximum number
of requests an API can access within a given time
frame, based on rate limiting approach. Some of the
approaches are Authenticated User, Request Origin,
Authenticated User, and Request Origin. For example,
you might decide that an API may be accessed only
once a day, by an authenticated user from a specific
mobile application.

• Limiting the number of connections: Maximum number
of connections that can be opened by a single client for
an API

• Closing slow connections: Time span, after which a
connection will be closed from a client that is writing data
too infrequently, which can represent an attempt to keep
connections open as long as possible

• Black list / White list IP addresses, if you can definitely
identify valid and invalid end users of your APIs

• Limiting the connections to backend microservices

• Blocking requests:
 o that seem to target a specific API
 o that have a User-Agent header, set to a value that
 does not correspond to normal client traffic
 o that have a referrer header, set to a value that can
 be associated with an attack
 o that have other headers with values that can be
 associated with an attack

Secure Communication

It is always desirable to have SSL/TLS compliant endpoints
at the API Gateway, as well as at the microservices layer, to
safeguard against man-in-middle attacks, and bi-directional
encryption of message data to protect against tampering.

If you are dealing with a number of certificates, then
managing those becomes a huge administrative burden.
There are solutions like letsencrypt.org, an AWS certificate
manager, which makes it possible to transparently issue or
revoke certificates.

Deployment Considerations

To strengthen security further, you should host all
microservices on private subnet and whitelist the gateway
IP at the microservices layer. If it is not possible to have
microservices on private subnet, then you should validate
each token with the authorization server per service call,
however, this will impact performance.

Microservice Architecture: API Gateway Considerations

7

Service Registry and Service Discovery

Service Registry and
Service Discovery
Ease in scaling is one of the key advantage of microservice
architecture. You will keep adding or removing microservice
instances to adapt to incoming traffic. In addition, your
teams may be adding new microservices or refactoring
existing microservices into multiple (especially when moving
from monolith to microservices). Service instances have
dynamically assigned network locations.

Service Registry

The service registry helps to keep track of these instances. It
is a database containing the network locations of the service
instances. Every service instance registers itself on start-up
and de-registers on shutdown. The API Gateway uses this
information during service discovery. The figure below shows
service registration and discovery.

There are two models for checking the status of a service:
pull model and push model. Although some of the registries
support the pull model, it is not recommended, as it puts an
additional load on the registry. Moreover, it is the service’s
responsibility to update the registry about its availability/
unavailability to serve the request.

As a critical component, the service registry needs to be
highly available. You should plan for a cluster of registries
that uses replication to maintain consistency. Never try to
cache the network locations obtained from the registry at
the registry user (API Gateway or registry aware client). That
information eventually becomes out-of-date, causing clients
to become unable to discover service instances.

Figure 4.
Service registration and
discovery

Microservice Architecture: API Gateway Considerations

8

Service Registry and Service Discovery

Service Discovery

The number and location of service instances is dynamic.
Consequently, your client code needs to use a more
elaborate service discovery mechanism. There are two main
service discovery patterns: client-side discovery and server-
side discovery, as shown in the figure below.

Figure 5.
There are two main
service discovery
patterns: client-side
discovery and server-
side discovery.

Server-side discovery is preferred for various reasons:

• It removes the discovery burden from the client so it can
focus on business functions.

• If you have multiple clients, then you need to code and
maintain the discovery code for each client.

• It reduces number of calls over the internet.

Microservice Architecture: API Gateway Considerations

9

Orchestration & Transformation

Orchestration
It is often necessary to orchestrate across multiple fine-
grained microservices to accomplish a business use case.
As shown in the figure below, there are two options for
implementing the orchestration: using the API Gateway as
the orchestration layer or coding orchestration in a separate
microservice.

You should avoid orchestration at the gateway layer. It
violates the single responsibility principle and, in the case of
scaling the API, you will have to scale the gateway along with
orchestrated microservices. Some of the API Gateways have
little to no capability for orchestration.

Although it is discouraged to use orchestration at the
gateway layer, if you still want to use it for whatever reason,
then there should not be any business logic involved while
orchestrating.

Figure 6.
There are two options
for implementing
orchestration: using
the API Gateway as the
orchestration layer or
coding orchestration in
a separate microservice.

Transformation
Often microservices have to deal with different clients
on the front end. They have different needs, from both
protocol (SOAP, REST, JSON,and XML) and data
perspective. Similarly, when you are moving from monolith to
microservices, backend services may understand different
protocols (SOAP, REST, AMQP etc.).

The API Gateway provides a place for data transformation,
where messages can be translated between backend, API,
and app formats and protocols. The gateway provides a
central data transformation point through which all traffic is
translated for:

• Requested payload transformations
• Header transformations
• Protocol transformations

Develop your transformation adapters as reusable
components. Also, do not try to code all different clients’
needs in a single API. You should think of creating client-
specific APIs with pluggable transformation logic.

Microservice Architecture: API Gateway Considerations

10

Monitoring

Monitoring
Being a single entry point into the system, all of the traffic
in and out of the system passes through the API Gateway,
so monitoring the gateway is critical. This provides an
opportunity to capture the information about data flow, which
becomes an input for IT administration and IT policies.

Health Monitoring

Health monitoring is done to make sure the gateway is up
and running. For health monitoring, it is recommended to
capture:

• System status and health (CPU, Memory, Thread usage)
• Network connectivity
• Security alerts
• Backups and recovery
• Maintenance of logs

Traffic and Data Monitoring

Analyzing the traffic data will help you to take proactive
measures, to ensure smooth working of the software
systems and shape up the IT policies. You should consider
monitoring the following basic metrics:

• Number of requests per API
• Request categorization by criteria (for example, remote-

host)
• Performance statistics
• Successful and exception messages
• Blocked messages breaching gateway policies

You should also regularly analyze the traffic over long range
period to be able to identify predictable traffic levels and be
ready for any surge.

Microservice Architecture: API Gateway Considerations

11

Load Balancing and Scaling

Load Balancing and
Scaling
Traffic and data analysis helps in understanding/estimating
the load on the system. In turn, this helps in scaling the
gateway and underlying services accordingly. The gateway
can scale both horizontally and vertically. An API Gateway
being load balanced runs the same configuration to virtualize
the same APIs, and executes the same policies. If multiple
API Gateway groups are deployed, load balancing should be
across groups.

The API Gateway does not impose any special requirements
on load balancers. Loads are balanced on a number of
characteristics including the response time or system load.
The execution of API Gateway policies is stateless, and
the route through which a message takes on a particular
system has no bearing on its processing. Some items like
caches and counters, which are held on a distributed cache,
are updated on a per-message basis. This helps the API
Gateway to operate successfully in both sticky and non-
sticky modes.

The distributed state poses a certain restriction in terms of
active/active and active/passive clustering. For example, in
case the counter and cache state is important, the system
should be designed to make sure at least one API Gateway
is active at all times. This means that for a resilient high-
availability system, you should employ a minimum of at least
two active API gateways at any given time, extra in passive
mode.

The API Gateway also ensures zero downtime by
implementing configuration deployment in a rolling fashion.
This means, while each API Gateway instance in the cluster
or group takes a few seconds to update its configuration, it
stops serving new requests, but all existing in-flight requests
are honored. Meanwhile, the rest of the cluster or group
can still receive new requests. The load balancer ensures
that requests are pushed to the nodes that are still receiving
requests.

Figure 7.
Load balancing and
scaling

Microservice Architecture: API Gateway Considerations

12

High Availability and Failover & Governance

High Availability and
Failover
Being a critical component and ONLY entry point in
microservice architecture, you should deploy the API gateway
in High Availability (HA) mode. API Gateway instances are
usually deployed behind standard load balancers, which
periodically query the state of the API Gateway. If a problem
occurs, the load balancer redirects traffic to the hot stand-by
instance.

Events/ alerts are configured for getting notifications in case
any issue occurs. If an event or alert is triggered, the issue
can be identified using API Gateway analytics and the active
API Gateway can then be repaired.

API Gateway instances are stateless by nature. No
session data is created, and therefore there is no need to
replicate the session state across API Gateways. However,
API Gateways can maintain cached data, which can be
replicated using a peer-to-peer relationship, across a cluster
of API Gateways.

High Availability can be maintained using either of these
options: Active/Active, Active/Standby, or Active/Active
Systems. These are described as follows:

• Active/Standby: System is turned off
• Active/Passive: System is operational but not containing

state
• Active/Active: System is fully operational and with current

system state

HA and Failover Guidelines

• To achieve maximum availability, API Gateway should be
used in Active/ Active for each production API Gateway

• Proper traffic analysis, to limit traffic to backend services,
to protect against message flooding. This is particularly
important with legacy systems that have been recently
service-enabled. Legacy systems may not have been
designed for the traffic patterns to which they are now
subjected.

• Monitor the network infrastructure carefully, to identify
any issues early on. You can do this using API Gateway
Manager and API Gateway Analytics. Interfaces are also
provided to standard monitoring tools, such as syslog
and Simple Network Management Protocol (SNMP).

Governance
As the number of APIs keep on increasing, it is essential
to establish policies and monitoring. The policies can
broadly be categorized as design-time governance and
runtime governance. The policies are highly influenced by IT
(business) objectives and goals.

Select and configure API Gateway policies that help you
implement runtime governance, such as:

Tracking the life cycle of APIs:

• Handling routing, blocking, and processing
• Understanding the API utilization and raising the alerts/

alarms in case usage crosses the threshold
• Traffic throttling, smoothing, and load balancing
• Rate limiting per-API usage
• API versioning
• Schema versioning for input/ output request parameters

Design time governance includes:

• Defining the standards for API definitions (example:
Swagger)

• Keyword tags used to categorize APIs
• Conformance to REST API design guidelines

Microservice Architecture: API Gateway Considerations

13

Conclusion & References

Conclusion
The API Gateway is the essential component of
microservices architecture. It helps to:

• Decouple consumers of the services from backend
services

• Implement policies in one place
• Achieve reusability
• Monitor the entire technology platform performance
• Enable easy scaling of services

References
• Pattern: API Gateway / Backend for Front-End

(Microservices.io)
• Building Microservices: Using an API Gateway (NGINX)
• Enabling Microservice Architecture with Middleware

(WSO2 Blog)
• Welcome to IdentityServer4 (IdentityServer4)
• Oracle® Fusion Middleware Part 1. API Gateway

administration (Oracle)

1741 Technology Dr.
San Jose, CA 95110

+1.408.273.8900
info@globallogic.com
www.globallogic.com

2017 GlobalLogic, Inc.
All Rights Reserved

http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
http://wso2.com/blogs/thesource/2016/05/enabling-microservice-architecture-with-middleware/
http://wso2.com/blogs/thesource/2016/05/enabling-microservice-architecture-with-middleware/
https://identityserver4.readthedocs.io/en/release/
https://docs.oracle.com/cd/E55956_01/doc.11123/administrator_guide/content/part_intro.html
https://docs.oracle.com/cd/E55956_01/doc.11123/administrator_guide/content/part_intro.html

	Introduction
	The What and Why of API Gateways
	Security
	Authentication and Authorization
	Threat Protection from DDoS
	Secure Communication
	Deployment Considerations

	Service Registry and Service Discovery
	Service Registry
	Service Discovery

	Orchestration
	Transformation
	Monitoring
	Health Monitoring
	Traffic and Data Monitoring

	Load Balancing and Scaling
	High Availability and Failover
	Governance
	Conclusion
	References

